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INTERACTION OF TRANSACTIONAL
STORAGE ACCESSES WITH OTHER
ATOMIC SEMANTICS

BACKGROUND OF THE INVENTION

The present invention relates generally to data processing
and, in particular, to storage accesses to the distributed
shared memory system of a data processing system.

A conventional multiprocessor (MP) computer system,
such as a server computer system, includes multiple pro-
cessing units all coupled to a system interconnect, which
typically comprises one or more address, data and control
buses. Coupled to the system interconnect is a system
memory, which represents the lowest level of volatile
memory in the multiprocessor computer system and which
generally is accessible for read and write access by all
processing units. In order to reduce access latency to instruc-
tions and data residing in the system memory, each process-
ing unit is typically further supported by a respective multi-
level cache hierarchy, the lower level(s) of which may be
shared by one or more processor cores.

Cache memories are commonly utilized to temporarily
buffer memory blocks that might be accessed by a processor
in order to speed up processing by reducing access latency
introduced by having to load needed data and instructions
from system memory. In some MP systems, the cache
hierarchy includes at least two levels. The level one (I.1) or
upper-level cache is usually a private cache associated with
a particular processor core and cannot be accessed by other
cores in an MP system. Typically, in response to a memory
access instruction such as a load or store instruction, the
processor core first accesses the directory of the upper-level
cache. If the requested memory block is not found in the
upper-level cache, the processor core then accesses lower-
level caches (e.g., level two (L2) or level three (I.3) caches)
or system memory for the requested memory block. The
lowest level cache (e.g., L3 cache) is often shared among
several processor cores.

In such systems, multiprocessor software concurrently
accesses shared data structures from multiple software
threads. When concurrently accessing shared data it is
typically necessary to prevent so-called ‘“unconstrained
races” or “conflicts”. A conflict occurs between two memory
accesses when they are to the same memory location and at
least one of them is a write and there is no means to ensure
the ordering in which those accesses occur.

Multiprocessor software typically utilizes lock variables
to coordinate the concurrent reading and modifying of
locations in memory in an orderly conflict-free fashion. A
lock variable is a location in memory that is read and then
set to a certain value, possibly based on the value read, in an
atomic fashion. The read-modify-write operation on a lock
variable is often accomplished utilizing an atomic-read-
modify-write (ARMW) instruction or by a sequence of
instructions that provide the same effect as a single instruc-
tion that atomically reads and modifies the lock variable.

In this manner, a software thread reading an initial
“unlocked” value via an ARMW instruction is said to have
“acquired” the lock and will, until it releases the lock, be the
only software thread that holds the lock. The thread holding
the lock may safely update the shared memory locations
protected by the lock without conflict with other threads
because the other threads cannot obtain the lock until the
current thread releases the lock. When the shared locations
have been read and/or modified appropriately, the thread
holding the lock releases the lock (e.g., by writing the lock
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2

variable to the “unlocked” value) to allow other threads to
access the shared locations in storage.

While locking coordinates competing threads’ accesses to
shared data, locking suffers from a number of well known
shortcomings. These include, among others, (1) the possi-
bility of deadlock when a given thread holds more than one
lock and prevents the forward progress of other threads and
(2) the performance cost of lock acquisition when the lock
may not have been strictly necessary because no conflicting
accesses would have occurred to the shared data.

To overcome these limitations, the notion of transactional
memory can be employed. In transactional memory, a set of
load and/or store instructions are treated as a “transaction.”
A transaction succeeds when the constituent load and store
operations can occur atomically without a conflict with
another thread. The transaction fails in the presence of a
conflict with another thread and can then be re-attempted. If
a transaction continues to fail, software may fall back to
using locking to ensure the orderly access of shared data.

To support transactional memory, the underlying hard-
ware tracks the storage locations involved in the transac-
tion—the transaction footprint—as the transaction executes
for conflicts. If a conflict occurs in the transaction footprint,
the transaction is aborted and possibly restarted. Use of
transactional memory reduces the possibility of deadlock
due to a thread holding multiple locks because, in the typical
case, no locks are held (the transaction simply attempts to
make one or more storage accesses and restarts if a conflict
occurs). Further, the processing overhead of acquiring a lock
is generally avoided.

BRIEF SUMMARY

In a processor, an instruction sequence including, in order,
a load-and-reserve instruction specifying a read access to a
target memory block, an instruction delimiting transactional
memory access instructions belonging to a memory trans-
action, and a store-conditional instruction specifying a con-
ditional write access to the target memory block is detected.
In response to detecting the instruction sequence, the pro-
cessor causes the conditional write access to the target
memory block to fail.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a high-level block diagram of an exemplary data
processing system in accordance with one embodiment;

FIG. 2 is a more detailed block diagram of an exemplary
processing unit in accordance with one embodiment;

FIG. 3 is a detailed block diagram of lower level cache
supporting memory transactions in accordance with one
embodiment;

FIG. 4 is an illustrative example of a memory transaction
in accordance with one embodiment;

FIG. 5 is an illustrative example of a memory transaction
including a suspended region in accordance with one
embodiment;

FIG. 6A depicts execution of an exemplary program
illustrating causality in a multiprocessor data processing
system,

FIG. 6B illustrates execution of an exemplary program
including memory transactions to ensure causality;

FIG. 6C depicts execution of an exemplary program
including both transactional and non-transactional memory
accesses;
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FIG. 7 illustrates a multiprocessor data processing system
including at least three processor cores that execute the
exemplary program of FIG. 6C;

FIG. 8 is a high level logical flowchart of an exemplary
method by which a multiprocessor data processing system
ensures causality in execution of a program including both
transactional and non-transactional memory accesses;

FIG. 9 is an illustrative example of a rewind-only memory
in accordance with one embodiment;

FIG. 10 is more detailed view of transactional memory
tracking logic in accordance with one embodiment;

FIG. 11 is a high level logical flowchart of an exemplary
method by which a rewind-only transaction is processed in
accordance with one embodiment;

FIG. 12 is an illustrative example of a representative
memory transaction containing a nested memory transaction
in accordance with one embodiment;

FIG. 13 is an illustrative example of a representative
rewind-only memory transaction containing a nested
memory transaction in accordance with one embodiment;

FIG. 14 illustrates a portion of transaction memory (TM)
tracking logic that may be employed in processing nested
memory transactions in accordance with one embodiment;

FIG. 15 is a high level logical flowchart of an exemplary
method of processing instructions delimiting nested memory
transactions in accordance with one embodiment;

FIG. 16 is a illustrative example of an instruction
sequence including load-and-reserve (larx) and store-condi-
tional (stcx) instructions;

FIG. 17 is an illustrative example of several interactions
between larx/stcx instructions and a representative memory
transaction in which the conditional memory update indi-
cated by the stcx instruction will fail;

FIG. 18 is an additional example of a larx/stcx instruction
pair encompassing a memory transaction;

FIG. 19 is an illustrative example of several interactions
between larx/stcx instruction pairs and a representative
memory transaction in which the conditional memory
update indicated by the stcx instruction will succeed;

FIG. 20 is an additional illustrative example of a larx/stcx
instruction pair in a suspended region of a memory trans-
action;

FIG. 21 is an illustrative instruction sequence in which a
larx/stcx instruction pair that is interrupted by a tabort or a
conflict will fail to update memory;

FIG. 22 is a high level logical flowchart of an exemplary
method of processing larx/stcx instructions in the presence
of memory transactions; and

FIG. 23 is a data flow diagram illustrating a design
process.

DETAILED DESCRIPTION

With reference now to the figures, wherein like reference
numerals refer to like and corresponding parts throughout,
and in particular with reference to FIG. 1, there is illustrated
a high level block diagram depicting an exemplary data
processing system 100 in accordance with one embodiment.
In the depicted embodiment, data processing system 100 is
a cache coherent symmetric multiprocessor (SMP) data
processing system including multiple processing nodes
102a, 1025 for processing data and instructions. Processing
nodes 102 are coupled to a system interconnect 110 for
conveying address, data and control information. System
interconnect 110 may be implemented, for example, as a
bused interconnect, a switched interconnect or a hybrid
interconnect.
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In the depicted embodiment, each processing node 102 is
realized as a multi-chip module (MCM) containing four
processing units 104a-104d, each preferably realized as a
respective integrated circuit. The processing units 104
within each processing node 102 are coupled for commu-
nication to each other and system interconnect 110 by a local
interconnect 114, which, like system interconnect 110, may
be implemented, for example, with one or more buses and/or
switches. System interconnect 110 and local interconnects
114 together form a system fabric.

As described below in greater detail with reference to
FIG. 2, processing units 104 each include a memory con-
troller 106 coupled to local interconnect 114 to provide an
interface to a respective system memory 108. Data and
instructions residing in system memories 108 can generally
be accessed, cached and modified by a processor core in any
processing unit 104 of any processing node 102 within data
processing system 100. System memories 108 thus form the
lowest level of volatile storage in the distributed shared
memory system of data processing system 100. In alterna-
tive embodiments, one or more memory controllers 106 (and
system memories 108) can be coupled to system intercon-
nect 110 rather than a local interconnect 114.

Those skilled in the art will appreciate that SMP data
processing system 100 of FIG. 1 can include many addi-
tional non-illustrated components, such as interconnect
bridges, non-volatile storage, ports for connection to net-
works or attached devices, etc. Because such additional
components are not necessary for an understanding of the
described embodiments, they are not illustrated in FIG. 1 or
discussed further herein. It should also be understood,
however, that the enhancements described herein are appli-
cable to cache coherent data processing systems of diverse
architectures and are in no way limited to the generalized
data processing system architecture illustrated in FIG. 1.

Multiprocessor data processing system such as data pro-
cessing system 100 of FIG. 1 implement a memory consis-
tency model that specifies the legal possible executions of a
given multiprocessor program with respect to memory
accesses (e.g., among other things, the values that may be
returned by load instructions, the order of writes to memory,
those instruction execution dependencies that affect the
ordering of memory accesses, and the final values for
memory locations at the conclusion of a multiprocessor
program). A memory consistency model is specified by two
major characteristics: ordering of memory access operations
and atomicity of store operations.

The ordering of memory operations specifies how
memory operations may, if at all, be re-ordered relative to
the order of their respective load and store instructions in the
individual threads of execution in the multiprocessor pro-
gram. Memory consistency models must define ordering of
memory access operations in four general cases: (1) ordering
of the memory operations for a load instruction to a follow-
ing load instruction, (2) ordering of the memory operations
for a load instruction to a following store instruction, (3)
ordering of the memory operations for a store instruction to
a following store instruction, and (4) ordering of the memory
operations for a store instruction to a following load instruc-
tion. Strong consistency memory models will, in general,
preserve all or at least most of these orderings. In particular,
many strong consistency memory models enforce the first
three orderings, but do not enforce store-to-load ordering.
Weak consistency memory models will generally not
enforce most or all of these orderings.

Atomicity of store operations refers to whether or not a
given thread of execution can read the value of its own store
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operation before other threads, and furthermore, whether the
value written to the distributed shared memory system by
the store operation becomes visible to other threads in a
logically instantaneous fashion or whether the value can
become visible to other threads at different points in time. A
memory consistency model is called “multi-copy atomic” if
the value written by a store operation of one thread becomes
visible to all other threads in a logically instantaneous
fashion. In general, strong consistency memory models are
multi-copy atomic, and weak consistency memory models
do not enforce multi-copy atomicity.

In a given multiprocessor program, program semantics
often require that multi-copy atomicity and/or the various
orderings between memory access operations are respected.
Therefore, in a data processing system 100 having a distrib-
uted shared memory system that implements a weak con-
sistency memory model, so called “barrier” (e.g., SYNC)
instructions are typically provided to allow the programmer
to specify what memory access operation orderings and
atomicity are to be applied during execution of the multi-
processor program.

Referring now to FIG. 2, there is depicted a more detailed
block diagram of an exemplary processing unit 104 in
accordance with one embodiment. In the depicted embodi-
ment, each processing unit 104 is an integrated circuit
including two or more processor cores 200a, 2005 for
processing instructions and data. In a preferred embodiment,
each processor core 200 is capable of independently execut-
ing multiple hardware threads of execution simultaneously.
However, in the following description, unless the interaction
between threads executing on a same processor core is
relevant in a particular context, for simplicity, terms “pro-
cessor core” and “thread executing on a processor core” are
used interchangeably. As depicted, each processor core 200
includes one or more execution units, such as load-store unit
(LSU) 202, for executing instructions. The instructions
executed by LSU 202 include memory access instructions
that request load or store access to a memory block in the
distributed shared memory system or cause the generation of
a request for load or store access to a memory block in the
distributed shared memory system. Memory blocks obtained
from the distributed shared memory system by load accesses
are buffered in one or more register files (RFs) 208, and
memory blocks updated by store accesses are written to the
distributed shared memory system from the one or more
register files 208.

The operation of each processor core 200 is supported by
a multi-level volatile memory hierarchy having at its lowest
level a shared system memory 108 accessed via an inte-
grated memory controller 106, and at its upper levels, one or
more levels of cache memory, which in the illustrative
embodiment include a store-through level one (I.1) cache
226 within and private to each processor core 200, and a
respective store-in level two (L2) cache 230 for each pro-
cessor core 200a, 2005. In order to efficiently handle mul-
tiple concurrent memory access requests to cacheable
addresses, each [.2 cache 230 can be implemented with
multiple 1.2 cache slices, each of which handles memory
access requests for a respective set of real memory
addresses.

Although the illustrated cache hierarchies includes only
two levels of cache, those skilled in the art will appreciate
that alternative embodiments may include additional levels
(L3, L4, etc.) of on-chip or off-chip, private or shared, in-line
or lookaside cache, which may be fully inclusive, partially
inclusive, or non-inclusive of the contents the upper levels
of cache.
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Each processing unit 104 further includes an integrated
and distributed fabric controller 216 responsible for control-
ling the flow of operations on the system fabric comprising
local interconnect 114 and system interconnect 110 and for
implementing the coherency communication required to
implement the selected cache coherency protocol. Process-
ing unit 104 further includes an integrated I/O (input/output)
controller 214 supporting the attachment of one or more 1/O
devices (not depicted).

In operation, when a hardware thread under execution by
a processor core 200 includes a memory access instruction
requesting a specified memory access operation to be per-
formed, L.SU 202 executes the memory access instruction to
determine the target address (e.g., an effective address) of
the memory access request. After translation of the target
address to a real address, .1 cache 226 is accessed utilizing
the target address. Assuming the indicated memory access
cannot be satisfied solely by reference to L1 cache 226, LSU
202 then transmits the memory access request, which
includes at least a transaction type (ttype) (e.g., load or store)
and the target real address, to its affiliated L2 cache 230 for
servicing.

With reference now to FIG. 3, there is illustrated a more
detailed block diagram of an exemplary embodiment of a
lower level cache (e.g., an L2 cache 230) that supports
memory transactions in accordance with one embodiment.
As shown in FIG. 3, .2 cache 230 includes a cache array 302
and a directory 308 of the contents of cache array 302.
Although not explicitly illustrated, cache array 302 prefer-
ably is implemented with a single read port and single write
port to reduce the die area required to implement cache array
302.

Assuming cache array 302 and directory 308 are set
associative as is conventional, memory locations in system
memories 108 are mapped to particular congruence classes
within cache array 302 utilizing predetermined index bits
within the system memory (real) addresses. The particular
memory blocks stored within the cache lines of cache array
302 are recorded in cache directory 308, which contains one
directory entry for each cache line. While not expressly
depicted in FIG. 3, it will be understood by those skilled in
the art that each directory entry in cache directory 308
includes various fields, for example, a tag field that identifies
the real address of the memory block held in the correspond-
ing cache line of cache array 302, a state field that indicate
the coherency state of the cache line, an LRU (Least
Recently Used) field indicating a replacement order for the
cache line with respect to other cache lines in the same
congruence class, and inclusivity bits indicating whether the
memory block is held in the associated L1 cache 226.

L2 cache 230 includes multiple (e.g., 16) Read-Claim
(RC) machines 312 for independently and concurrently
servicing load (D) and store (ST) requests received from
the affiliated processor core 200. In order to service remote
memory access requests originating from processor cores
200 other than the affiliated processor core 200, [.2 cache
230 also includes multiple snoop machines 311. Each snoop
machine 311 can independently and concurrently handle a
remote memory access request “snooped” from local inter-
connect 114. As will be appreciated, the servicing of
memory access requests by RC machines 312 may require
the replacement or invalidation of memory blocks within
cache array 302. Accordingly, .2 cache 230 also includes
CO (castout) machines 310 that manage the removal and
writeback of memory blocks from cache array 302.

L2 cache 230 further includes an arbiter 305 that controls
multiplexers M1-M2 to order the processing of local
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memory access requests and memory transaction requests
(corresponding to the tbegin, tbegin_rot, tend, tabort, and
tcheck instructions described further herein) received from
the affiliated processor core 200 and remote requests
snooped on local interconnect 114. Such requests, including
local load and store and memory transaction requests and
remote load and store requests, are forwarded in accordance
with the arbitration policy implemented by arbiter 305 to
dispatch logic, such as a dispatch pipeline 306, which
processes each read/load and store request with respect to
directory 308 and cache array 302. As described further
below, transactional memory (TM) logic 380 processes
memory transaction requests and tracks memory access
operations within memory transactions to ensure completion
of the memory access operations in an atomic manner or to
abort the memory transactions in the presence of conflicts.

L2 cache 230 also includes an RC queue 320 and a CPI
(castout push intervention) queue 318 that respectively
buffer data being inserted into and removed from the cache
array 302. RC queue 320 includes a number of buffer entries
that each individually correspond to a particular one of RC
machines 312 such that each RC machine 312 that is
dispatched retrieves data from only the designated buffer
entry. Similarly, CPI queue 318 includes a number of buffer
entries that each individually correspond to a particular one
of the castout machines 310 and snoop machines 311, such
that each CO machine 310 and each snooper 311 that is
dispatched retrieves data from only the respective desig-
nated CPI buffer entry.

Each RC machine 312 also has assigned to it a respective
one of multiple RC data (RCDAT) buffers 322 for buffering
a memory block read from cache array 302 and/or received
from local interconnect 114 via reload bus 323. The RCDAT
buffer 322 assigned to each RC machine 312 is preferably
constructed with connections and functionality correspond-
ing to the memory access requests that may be serviced by
the associated RC machine 312. RCDAT buffers 322 have an
associated store data multiplexer M4 that selects data bytes
from among its inputs for buffering in the RCDAT buffer
322 in response unillustrated select signals generated by
arbiter 305.

In operation, a processor core 200 transmits store requests
comprising a transaction type (ttype), target real address and
store data to a store queue (STQ) 304. From STQ 304, the
store data are transmitted to store data multiplexer M4 via
data path 324, and the transaction type and target address are
passed to multiplexer M1. Multiplexer M1 also receives as
inputs processor load requests from processor core 200 and
directory write requests from RC machines 312. In response
to unillustrated select signals generated by arbiter 305,
multiplexer M1 selects one of its input requests to forward
to multiplexer M2, which additionally receives as an input
a remote request received from local interconnect 114 via
remote request path 326. Arbiter 305 schedules local and
remote memory access requests for processing and, based
upon the scheduling, generates a sequence of select signals
328. In response to select signals 328 generated by arbiter
305, multiplexer M2 selects either the local request received
from multiplexer M1 or the remote request snooped from
local interconnect 114 as the next memory access request to
be processed.

The request selected for processing by arbiter 305 is
placed by multiplexer M2 into dispatch pipeline 306. Dis-
patch pipeline 306 preferably is implemented as a fixed
duration pipeline in which each of multiple possible over-
lapping requests is processed for a predetermined number of
clock cycles (e.g., 4 cycles). During the first cycle of
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processing within dispatch pipeline 306, a directory read is
performed utilizing the request address to determine if the
request address hits or misses in directory 308, and if the
memory address hits, the coherency state of the target
memory block. The directory information, which includes a
hit/miss indication and the coherency state of the memory
block, is returned by directory 308 to dispatch pipeline 306
in a subsequent cycle. As will be appreciated, no action is
generally taken within an [.2 cache 230 in response to miss
on a remote memory access request; such remote memory
requests are accordingly discarded from dispatch pipeline
306. However, in the event of a hit or miss on a local
memory access request or a hit on a remote memory access
request, .2 cache 230 will service the memory access
request, which for requests that cannot be serviced entirely
within processing unit 104, may entail communication on
local interconnect 114 via fabric controller 216.

At a predetermined time during processing of the memory
access request within dispatch pipeline 306, arbiter 305
transmits the request address to cache array 302 via address
and control path 330 to initiate a cache read of the memory
block specified by the request address. The memory block
read from cache array 302 is transmitted via data path 342
to Error Correcting Code (ECC) logic 344, which checks the
memory block for errors and, if possible, corrects any
detected errors. For processor load requests, the memory
block is also transmitted to load data multiplexer M3 via
data path 340 for forwarding to the affiliated processor core
200.

At the last cycle of the processing of a memory access
request within dispatch pipeline 306, dispatch pipeline 306
makes a dispatch determination based upon a number of
criteria, including (1) the presence of an address collision
between the request address and a previous request address
currently being processed by a castout machine 310, snoop
machine 311 or RC machine 312, (2) the directory infor-
mation, and (3) availability of an RC machine 312 or snoop
machine 311 to process the memory access request. If
dispatch pipeline 306 makes a dispatch determination that
the memory access request is to be dispatched, the memory
access request is dispatched from dispatch pipeline 306 to an
RC machine 312 or a snoop machine 311. If the memory
access request fails dispatch, the failure is signaled to the
requestor (e.g., local or remote processor core 200) by a
retry response. The requestor may subsequently retry the
failed memory access request, if necessary.

While an RC machine 312 is processing a local memory
access request, the RC machine 312 has a busy status and is
not available to service another request. While an RC
machine 312 has a busy status, the RC machine 312 may
perform a directory write to update the relevant entry of
directory 308, if necessary. In addition, the RC machine 312
may perform a cache write to update the relevant cache line
of cache array 302. Directory writes 408a, 4085 and cache
writes may be scheduled by arbiter 305 during any interval
in which dispatch pipeline 306 is not already processing
other requests according to the fixed scheduling of directory
reads and cache reads. When all operations for the given
request have been completed, the RC machine 312 returns to
an unbusy state.

Associated with RC machines 312 is data handling cir-
cuitry, different portions of which are employed during the
servicing of various types of local memory access requests.
For example, for a local load request that hits in directory
308, an uncorrected copy of the target memory block is
forwarded from cache array 302 to the affiliated processor
core 200 via data path 340 and load data multiplexer M3 and
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additionally forwarded to ECC logic 344 via data path 342.
In the case of an ECC error in the target memory block
obtained by the local load request, corrected data is for-
warded to RCDAT buffer 322 via data path 346 and store
data multiplexer M4 and then from RCDAT 322 to affiliated
processor core 200 via data path 360 and load data multi-
plexer M3. For a local store request, store data is received
within RCDAT buffer 322 from STQ 304 via data path 324
and store data multiplexer M4, the store is merged with the
memory block read into RCDAT buffer 322 from cache
array 302 via ECC logic 344 and store data multiplexer M4,
and the merged store data is then written from RCDAT
buffer 322 into cache array 302 via data path 362. In
response to a local load miss or local store miss, the target
memory block acquired through issuing a memory access
operation on local interconnect 114 is loaded into cache
array 302 via reload bus 323, store data multiplexer M4,
RCDAT buffer 322 (with store merge for a store miss) and
data path 362.

Referring now to FIG. 4, an illustrative example of a
memory transaction is depicted. Those skilled in the art will
recognize that the particular semantics and instructions
utilized to implement the various memory transactions
described herein are but some of the numerous possible
implementations and that the disclosed techniques of imple-
menting transactional memory are not dependent on the
specific instructions and instruction semantics employed.

Tlustrative memory transaction 400 begins at tbegin
instruction 402. Thegin instruction 402 initiates memory
transaction 400, causes the processor core 200 executing
thegin instruction 402 to take a checkpoint 210 of the
architected register state of processor core 200, and (e.g.,
through a corresponding tbegin request sent to the affiliated
L2 cache 230) invokes tracking of load and store instruc-
tions within the transaction body 406 to ensure they com-
plete in an atomic fashion or that memory transaction 400
fails in the presence of a conflict. Memory transaction 400
additionally includes a branch instruction 404 immediately
following thegin instruction 402. When memory transaction
400 first executes, the condition code register in processor
core 200 upon which branch instruction 404 depends is
initialized to a value that causes the program branch indi-
cated by branch instruction 404 not to be taken and the flow
of execution to continue to transaction body 406. As dis-
cussed below, in response to failure of memory transaction
400, the condition code register is set to a different value,
and branch instruction 404 causes execution to branch to a
fail handler routine.

In the exemplary embodiment depicted in FIG. 3, TM
logic 380 tracks transactional memory access (e.g., load and
store) instructions within transaction body 406 to ensure that
they complete in an atomic fashion or that memory trans-
action 400 fails in the presence of a conflict. In particular,
TM tracking logic 381 within TM logic 380 includes a
number of entries that indicate which cache lines in cache
array 302 are included in the transaction footprint (as
described below, for example, with reference to FIG. 10).
The transaction footprint includes two portions: the load
footprint corresponding to cache lines touched solely by
loads within transaction body 406 (e.g., the cache line at
address A in exemplary memory transaction 400) and the
store footprint corresponding to cache lines touched solely
by store instructions or by both load and store instructions in
transaction body 406 (e.g., the cache line at address B in
exemplary memory transaction 400).

As further shown in FIG. 3, TM logic 380 further includes
transactional control logic 382, which controls the sequenc-
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ing of a memory transaction and provides a pass/fail indi-
cation 384 and an optional TM killed indication 385 to the
associated processor core 200. Pass/fail indication 384 indi-
cates to processor core 200 whether or not the memory
transaction successfully committed to the distributed shared
memory system at the execution of the tend instruction 408
at the end of memory transaction 400. TM killed indication
385 indicates to processor core 200 whether or not a conflict
has occurred during the transaction. In response to transac-
tional control logic 382 asserting TM killed indication 385,
processor core 200 may, as a performance optimization,
optionally abort and restart memory transaction 400 prior to
reaching tend instruction 408.

In response to pass/fail indication 384 (or optionally TM
killed indication 385) indicating that a conflict has occurred
during execution of memory transaction 400, processor core
200 re-establishes its architected register state from the
checkpoint 210 taken at the execution of thegin instruction
402, invalidates the tentatively modified cache lines in the
store footprint, releases tracking logic 381, sets the condition
code register such that branch instruction 404 will be taken,
and transfers control to branch instruction 404. In addition,
processor core 200 sets a transaction failure cause register
(not shown) in processor core 200 to indicate the cause of
the memory transaction’s failure. The fail handler routine
invoked by branch instruction 404 may choose to re-attempt
memory transaction 400 or fall back to more conventional
locking mechanisms, optionally based on the content of the
transaction failure cause register.

During the execution of a memory transaction, the values
stored to the distributed shared memory system by transac-
tion body 406 (i.e., those in the store footprint of the memory
transaction) are visible only to the thread of the processor
core 200 executing the memory transaction. Threads run-
ning on the same or other processor cores 200 will not see
these values until and only if the memory transaction
successfully commits.

For a memory transaction to successfully commit, the
load and store instructions in transaction body 406 must
complete in an atomic fashion (i.e., there must be no
conflicts for the cache lines in the memory transaction’s load
and store footprints) and the effects of the store instructions
in transaction body 406 must propagate to all processing
units 104 in data processing system 100 and invalidate any
cached copies of those cache lines held in other processing
units 104. If both of these conditions hold when tend
instruction 408 is executed, transactional control logic 382
indicates to processor core 200 via pass/fail indication 384
that memory transaction 400 passed and commits all stores
performed in transaction body 406 to L2 cache 230, thus
making them visible to all other threads and processor cores
200 in the system simultaneously.

In the following discussion, a load or store instruction will
be called “transactional” if that load or store instruction
occurs within the transaction body 406 of a memory trans-
action 400. Similarly, a load or store will be called “non-
transactional” if it occurs outside a transaction body 406. In
one exemplary embodiment, a conflict policy of data pro-
cessing system 100 defines a conflict with another processor
core’s memory access to occur for a given memory trans-
action in any one of several possible cases. In a first case, a
conflict occurs if a non-transactional store from another
processor core 200 hits a cache line within either the given
memory transaction’s load or store footprint. In a second
case, a conflict occurs if a transactional store from another
processor core 200 hits a cache line within the given
memory transaction’s load footprint. In a third case, a
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conflict occurs if a non-transactional load hits a cache line
within the given memory transaction’s store footprint. In a
fourth case, a conflict occurs if a transactional load from
another processor core 200 hits a cache line within the given
memory transaction’s store footprint. In addition, the given
memory transaction has a conflict if one of its transactional
stores hits an address already extant in the store footprint of
another processor core’s memory transaction. This exem-
plary conflict policy is but one of several possible embodi-
ments of transactional memory. The above conflict policy
biases in favor of transactional stores over transactional
loads, while allowing transactional and non-transactional
loads to freely intermingle.

With reference now to FIG. 5, there is illustrated a
representative memory transaction 500 containing a sus-
pended region. As can be seen by comparison of FIGS. 4-5,
memory transaction 500 includes a thegin instruction 502,
branch instruction 504, transaction body 506 and tend
instruction 508, which correspond to thegin instruction 402,
branch instruction 404, transaction body 406 and tend
instruction 408 described above. In addition, memory trans-
action 500 includes a tsuspend instruction 510 that initiates
the start of a suspended region 512. When a memory
transaction is suspended through execution of tsuspend
instruction 510, the load and store footprints currently
established for the enclosing memory transaction containing
suspended region 512 remain in place and continue to be
tracked by TM tracking logic 381 for conflicts. However,
any load or store instructions within suspended region 512
are treated as non-transactional loads and stores and follow
existing semantics for such loads and stores. In particular,
stores within suspended region 512 are non-transactional
and will commit and begin propagating to other processors
unconditionally. If a store within suspended region 512 hits
either the load or the store footprint of the enclosing memory
transaction, a conflict occurs (which also destroys the ten-
tative transactional version of the cache line in the store
footprint) and is logged by transactional control logic 382.
However, this conflict is not acted on until the enclosing
memory transaction is resumed upon execution of tresume
instruction 514, at which point the processor core 200 passes
control to branch instruction 504 as described. If a non-
transactional load instruction within suspended region 512
hits a cache line within the store footprint of the enclosing
memory transaction 500, that load instruction returns the
tentatively updated value written by a transactional store
within the transaction body 506 unless that value has been
overwritten by a non-transactional store either by another
processor core 200 or by a non-transactional store in sus-
pended region 512, in which case the non-transactional load
instruction returns the current value of the target location.

Use of a suspended region 512 allows the temporary
suspension of a memory transaction, which permits store
instructions in the suspended region 512 to unconditionally
update locations in the distributed shared memory system
while also allowing for the resumption of the memory
transaction at a later time. One possible use for a suspended
region 512 is to log debug information into a scratchpad
region of the distributed shared memory system and then to
resume the enclosing memory transaction. Without a sus-
pended region, the write of the debug information would be
rolled back any time the enclosing memory transaction is
aborted.

Referring now to FIG. 6A, the execution of an exemplary
program illustrating the property of causality in a multipro-
cessor data processing system is shown. As used herein
“causality,” which is desirable property in multiprocessor
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programs, is defined as being preserved if, during execution
of a multiprocessor program, a given thread of execution
cannot read the effects of a computation before the writes
that caused the computation can be read by the given thread.

In the simplified example given in FIG. 6A (as well as
those discussed below with reference to FIGS. 6B-6C), a
multiprocessor program is executed by three processor cores
200 of data processing system 100, labeled for ease of
reference as processor core 0, processor core 1 and processor
core 2. In FIG. 6A, processor core 0 executes a store
instruction 600 that writes a value of 1 to address A in the
distributed shared memory system. This update of address A
propagates to processor core 1, and load instruction 610
executed by processor core 1 therefore returns a value of 1.
Even though the memory update made by store instruction
600 has propagated to processor core 1, that memory update
may not yet have propagated to processor core 2. If store
instruction 614 executes on processor 1 and the associated
memory update propagates to processor 2 before the
memory update of store instruction 600 propagates to pro-
cessor 2, causality would be violated because the store of the
value of 1 to address B, which is an effect of the store to
address A, would be visible to processor core 2 before the
memory update associated with causal store instruction 600
was visible to processor core 2.

To ensure causality in a weak consistency memory model,
barrier instruction 612 (e.g., a SYNC) ensures that store
instruction 614 does not take effect or begin propagating its
memory update to other processor cores until load instruc-
tion 610 has bound to its value. In addition, barrier instruc-
tion 612 also ensures that the memory update associated
with store instruction 600 propagates to processor 2 before
the memory update associated with store instruction 614.
Thus, causality is preserved because the cause of the com-
putation (i.e., the memory update of store instruction 600) is
visible to processor core 2 before the result of the compu-
tation (i.e., the memory update of store 614). A barrier
instruction 622 is also executed by processor core 2 to
ensure that processor core 2 executes load instructions 620
and 624 and binds their values in order, thus guaranteeing
that processor core 2 properly observes the memory updates
made by processor core 0 and processor core 1.

With reference now to FIG. 6B, an exemplary embodi-
ment of the multiprocessor program of FIG. 6A rendered in
terms of memory transactions is illustrated. In FIG. 6B, the
branch instructions to the memory transaction fail handler
are omitted for clarity.

As illustrated, processor core 0 executes a memory trans-
action 630 including a tbegin instruction 632, tend instruc-
tion 636, and a transaction body including a store instruction
634 that stores a value of 1 to address A. Upon the execution
of tend instruction 636, memory transaction 600 success-
fully commits and makes the update to address A visible to
all the other processor cores simultaneously. In particular, by
the time load instruction 642 of the memory transaction 640
executing on processor core 1 can read the value of 1 from
address A, load instruction 654 of the memory transaction
650 executing on processor core 2 must also be able to read
the value of 1 for address A. Memory transaction 640 then
reads the value of 1 for address A, stores a value of 1 to
address B and successfully commits. Finally, load instruc-
tion 652 of memory transaction 650 reads a value of 1 for
address B, and given that memory transaction 640 read a
value of 1 for A, load instruction 654 must also read a value
of 1 for address A.

In order to make the memory updates of store instructions
in a successful transaction visible to all other processor cores
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simultaneously, before that memory transaction can commit
all the cache line invalidates necessitated by the memory
transaction must have propagated through the data process-
ing system such that any other processor cores’ now stale
copies of the updated cache lines have been removed (e.g.,
invalidated) and can no longer be read by the other processor
cores. Without this requirement, a processor core could still
read a stale value for an updated memory location after the
memory transaction that updated the memory location com-
mitted. A processor core, therefore, needs to ensure that the
memory updates associated with its own transactional stores
are fully propagated through the data processing system to
invalidate any stale cached copies before committing a
successful memory transaction in order to maintain the
semantics of memory transactions. As a consequence of the
propagation of the memory updates inherent in the seman-
tics of memory transactions, causality is trivially preserved
when only memory transactions are utilized to access
memory locations in a distributed shared memory system.
However, when transactional and non-transactional code
interact on the same shared variables, causality is not
directly preserved by ensuring that the memory updates
made by a memory transaction are visible simultaneously to
all other processor cores.

Referring now to FIG. 6C, an illustrative multiprocessor
program is depicted that includes a mixture of transactional
and non-transactional accesses to a distributed shared
memory system. In the exemplary multiprocessor program,
processor core 0 executes a non-transactional store instruc-
tion 660 that unconditionally writes a value of 1 to address
A in the distributed shared memory system. This value
propagates to processor core 1 and is read by transactional
load instruction 672 within the memory transaction 670
executed by processor core 1. Processor core 1 then executes
a store instruction 674 within memory transaction 670 that
updates the cache line associated with address B and com-
pletes invalidating any stale cached copies of the cache line
associated with address B (so that no other processor core
holds a copy of the now stale cache line) and successfully
commits memory transaction 670 upon execution of tend
instruction 676. Processor core 2 then executes load instruc-
tions 680 and 684 to read, in order, the cache lines associated
with addresses B and A, respectively, based on the ordering
enforced by barrier instruction 682. If transaction 670 only
ensures that its own memory updates are fully propagated
through the distributed shared memory system before com-
mitting, the memory update of store instruction 660 may or
may not have propagated to processor core 2. Therefore, in
at least some operating scenarios, processor core 2 could
read a value of 1 for the cache line associated with address
B and the, now stale, initial value of O for the cache line
associated with address A, thus violating causality. The same
result would be obtained if processor core 2 utilized trans-
actional loads to read from addresses A and B, as depicted
for processor 2 in FIG. 6B.

To guarantee causality, memory transaction 670 must
ensure not only that its own transactional stores are propa-
gated throughout the entire distributed shared memory sys-
tem, but also that any non-transactional store that is read by
a transactional load within the transaction has also propa-
gated throughout the distributed shared memory system.
(Memory updates of transactional writes that are read by the
memory transaction are guaranteed to have propagated
throughout the distributed shared memory system because
those memory updates could not be read by transaction 670
before they were visible to the entire distributed shared
memory system). To ensure that the memory updates of
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non-transactional stores read by memory transaction 670 are
also propagated throughout the distributed shared memory
system, the processing of the tend instruction 676 of
memory transaction 670 must not allow commitment of
memory transaction 670 until the memory update of any
non-transactional store read by memory transaction 670 is
propagated throughout the distributed shared memory sys-
tem.

With reference now to FIG. 7, there is illustrated a partial
view of data processing system 100 of FIG. 1, which
executes the multiprocessor program of FIG. 6C. In the view
given in FIG. 7, processor cores 200a, 2005 and 200c
respectively correspond to processor cores 0, 1 and 2 of FIG.
6C. Further, an instance of causality resolution logic 379 is
instantiated for and coupled to each instance of snooper 311,
for example, as a component of the L2 cache 230 affiliated
with each processor core 200.

Initially, processor core 200c¢ holds a cached copy of the
initial value (e.g., 0) of memory location A in its .1 cache
226¢. Processor 200a begins execution of the multiprocessor
program of FIG. 6C by executing store instruction 660. In
response to execution of store instruction 660, processor
core 200a transmits a store request to its .2 cache 230a,
which allocates an RC machine 312 to service the store
request. RC machine 312 broadcasts the store request onto
local interconnect 114, and snoop machine 311c¢ of the [.2
cache 230c¢ affiliated with processor core 200c registers the
store request, including the processing unit that sourced the
store request (i.e., the processing unit including processor
core 200q). At this point, the memory update of store
instruction 660 has not propagated to processor core 200c,
but is instead queued for later processing, advantageously
allowing processor core 200a to continue executing further
instructions before the memory update of store instruction
660 is fully propagated.

Processor core 2005 then executes load instruction 672
and, finding no copy of the target cache line associated with
address A in its .1 cache 2265, transmits a read request to
its .2 cache 23054. In response to the read request, [.2 cache
2305 allocates RC machine 3125 to service the read request.
In response to a miss of the read request in .2 cache 2305,
RC machine 3125 issues a read request onto local intercon-
nect 114 to obtain the current value for address A. L.2 cache
230a responds to the read request and provides the current
value of address A to processor core 2006 by cache-to-cache
intervention. At this point a so-called “causality passing
read” has occurred, that is, load instruction 672 has read the
value of a store instruction that has not fully propagated
through the entire distributed shared memory system. To
account for this fact and to protect causality, causality
resolution logic 379¢ in L2 cache 230c¢ notes the successful
read intervention between the vertical cache hierarchies of
processor cores 200a and 2006 for an address that is
currently being invalidated by snoop machine 311c. In this
manner causality resolution logic 379¢ directly tracks the
causal dependency that processor 2005 and its vertical cache
hierarchy has on the memory update of store instruction 660
completing its propagation.

Processor 2005 executes store instruction 674, which
specifies an update of the value of address B to 1. In
response to execution of store instruction 674, RC machine
3125 issues a store request corresponding to store instruction
674 on local interconnect 114. In absence of an existing
cached copy of the target cache line, memory controller 106
supplies the current value of address B from system memory
108 in response to the store request, and RC machine 3126
updates L2 cache 2305 accordingly. At this point processor
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core 1 executes tend instruction 676 to attempt to success-
fully commit transaction 670 and places a corresponding
TEND request on local interconnect 114 to ensure that all
prior memory updates by transactional stores in memory
transaction 670 have been propagated throughout the dis-
tributed shared memory system and that any memory
updates by non-transactional stores read by memory trans-
action 670 have similarly propagated throughout the distrib-
uted shared memory system. In this case, the memory update
of store instruction 674 has fully propagated throughout the
distributed shared memory system because no other caches
held a copy of the cache line associated with address B.
However, had any such copy existed and had the memory
update not been fully complete, a snoop machine 311 in
those caches, which noted the initial processor core 200
issuing the store, would be active and would provide a retry
response to the snooped TEND request from that processor
core 200 (forcing the TEND request to be reissued) until the
invalidation of the cached copy of the cache line completes.

In the case at hand, the TEND request is not from the
processor core 200 that initiated the store request, and
therefore snoop machine 311¢ will not provide a retry
response to the TEND request. However, causality resolu-
tion logic 379¢ has a causal dependency for processor 2005
and its vertical cache hierarchy and issues on local inter-
connect 114 a retry response to the TEND request because
the TEND request was issued from a processor core 200 that
was the recipient of a causality passing read of the same
address that snoop machine 311c¢ is processing. In this
manner, causality resolution logic 379 directly tracks which
processor cores 200 have a causality dependency due to
reading a memory update of a non-transactional store that
was not fully completed for the processor core with which
causality resolution logic 379 is associated.

It should be noted that, in general, causality resolution
logic 379 must maintain a list capable of representing all the
processors cores 200 in the data processing system to
provide causality in cases in which the causality dependency
chain passes through more than one processor core (e.g., a
test where a first processor stores a location, a second
processor reads that location and then stores a first flag
variable, a third processor loads the first flag variable and
writes a second flag in a transaction, and then a final thread
reads the second flag and then the initial location). In such
an implementation, a TEND request issued from any pro-
cessor core with a causal dependency on the target address
being invalidated by the snoop machine 311 associated with
the instance of causality resolution logic 379 is retried. In a
large SMP, however, such an embodiment can be prohibitive
in cost and many implementations of causality resolution
logic 379 only precisely track causal dependency chains of
a certain fixed depth (e.g., two or three processors) and in the
presence of longer dependency chains resort to pessimisti-
cally retrying all TEND requests until the cache line invali-
dations necessitated by the store instruction have completed
processing.

To summarize, causality resolution logic is utilized to
detect the occurrence of causal dependency chains, to a
depth determined by the embodiment, on a pending store
that has not completed processing throughout the entire
distributed shared memory system. These causal dependen-
cies are utilized to stall the completion of TEND requests
from those processor cores with a causal dependency on the
incomplete (pending) stores. In this manner, the memory
transaction cannot complete (and therefore make its own
stores visible), until the stores the memory transaction has
read (i.e., those in the causal dependency chain of the
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memory transaction) have first completed throughout the
distributed shared memory system. Only after these stores in
the memory transaction’s causal dependency chain (and the
transactional stores of the memory transaction itself, though
this is guaranteed by snooper 311 instead of causality
resolution logic 379) have completed, may the TEND
request complete, leading to the memory transaction suc-
cessfully committing if no conflicts have occurred during its
execution.

In other embodiments, additional causality resolution
logic may be required to ensure the causality of memory
operations. For example, in an implementation that contains
a write-through L1 cache shared by a multithreaded proces-
sor core followed by a shared 1.2 store queue, it is possible
for different threads (i.e., logically different processor cores
from the point of view of software) to read stored values
from the L1 cache before these stores have even propagated
to the L2 cache, much less to the entire distributed shared
memory system. In such an implementation, the tend
instruction must act as a barrier for transactional stores in the
given thread. This behavior ensures that the transactional
stores are propagated to the system interconnect and the
necessary snoop machines 311 so that the tend instruction
can ensure, when trying to complete the memory transac-
tion, that all of the cache line invalidations required by the
memory transaction’s stores have fully propagated. In addi-
tion, the tend instruction must act as a barrier for non-
transactional stores that have been (or may have been) read
by transactional loads within the transaction. In the simplest
(and most common embodiment), all non-transactional
stores within the shared store queue are treated as if they
have come from a single thread for purposes of retrying the
TEND request.

In this manner, all non-transactional stores from which
any transaction has (or may have) read that have not been
fully propagated are broadcast to snoop machines 311 as
necessary before a TEND request for any transaction from
that multithreaded processor core is presented on local
interconnect 114. In such an embodiment, snoop machines
311 treat all stores coming from a given multithreaded
processor core in a unified manner and will retry any TEND
request, as necessary, from that given multithreaded proces-
sor core regardless of thread. In this embodiment, causality
resolution logic 379 is not involved in monitoring these
intra-core dependencies, but instead is utilized solely to
manage causality dependencies between multithreaded pro-
cessor cores.

The exact placement and details of the necessary causality
resolution logic will vary with the particulars of given
embodiment and will be apparent to those skilled in the art
given the teachings herein. In general, at any point where a
load may return the value of a store that has not fully
propagated throughout the entire distributed shared memory
system, a mechanism must be provided to ensure that any
store with a causal dependency to a different processor core
is noted and that causal dependency delays the processing of
a tend instruction (or other semantic) ending a memory
transaction until such time as the stores in the causal
dependency chain of the memory transaction have com-
pleted propagating.

Referring now to FIG. 8, there is depicted a high level
logical flowchart of the processing of a tend instruction
terminating a memory transaction in accordance with one
embodiment. The process begins at block 800, for example,
in response to initiation of execution of a tend instruction
within the LSU 202 of a processor core 200. The process of
FIG. 8 proceeds from block 800 to block 801, which depicts
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LSU 202 ensuring that all prior suspend mode load instruc-
tions and all prior transactional load instructions have their
values bound. This check ensures the transactional load
instructions are present in the memory transaction’s foot-
print and that the suspend mode load instructions have
obtained their values. The process proceeds from block 801
to block 802, which depicts ensuring that the cache line
invalidations necessitated by transactional stores within the
memory transaction have been fully propagated throughout
the distributed shared memory system. In the embodiment
described above, verification of propagation of the cache
line invalidations necessitated by transactional stores is
accomplished by one or more snoop machines 311 providing
a retry response to any applicable TEND request on local
interconnect 114 until the previous transactional stores have
invalidated all cached copies of the memory location(s)
targeted by the memory updates. The process then proceeds
to step 804, which illustrates ensuring that the cache line
invalidations necessitated by causally dependent non-trans-
actional stores have completely propagated throughout the
distributed shared memory system. In the embodiment
described above, verification of propagation of the cache
line invalidations necessitated by non-transactional stores is
accomplished by one or more instances of causality resolu-
tion logic 379 providing a retry response to any applicable
TEND request on local interconnect 114 until the previous
memory updates of causally dependent non-transactional
stores have invalidated all cached copies of the memory
location(s) targeted by the memory updates.

At block 806, transactional control logic 382 determines
whether or not a conflict has occurred for the memory
transaction. In response to transactional control logic 382
determining that a conflict has occurred, the process pro-
ceeds to block 808, which depicts transactional control logic
382 invalidating the tentative store footprint of the memory
transaction (e.g., as recorded in 1.2 cache 230) and indicating
via pass/fail indication 384 that the memory transaction has
failed. As further illustrated at block 808, in response to
pass/fail indication 384 processor core 200 updates its
condition code register and transfers control to the fail
handling branch instruction within the memory transaction
(block 808). The process then terminates at step 812.

Returning to block 806, in response to transactional
control logic 382 determining that no conflict has occurred
during execution of the memory transaction, the process
proceeds to step 810, which depicts TM control logic 382
committing the transaction, inter alia, by causing the trans-
action footprint to be committed to the distributed shared
memory system (e.g., by updating one or more coherence
states in the directory 308 of 1.2 cache 230 to indicate the
transaction footprint is valid and available for access by all
threads) and indicating to processor core 200 via pass/fail
indication 384 that the memory transaction passed. The
process then terminates at block 812.

Memory transactions, as described above, enable a pro-
grammer to enforce execution of groups of load and/or store
instructions by a data processing system in an atomic
fashion and to fail and repeat the memory transactions as
necessary to preserve the appearance of atomicity of the
storage accesses of the memory transactions in the presence
of conflicts with other storage accesses. While memory
transactions provide a valuable and needed capability, there
is also a need to be able to speculatively execute a block of
instructions, particularly including store instructions, and
then to be able to discard the results of that execution under
software control without regard to the existence of conflict-
ing accesses. For example, some programming models
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require that the execution of certain code sequences do not
cause a fault. To avoid such faults, an additional code
sequence is typically required to validate that the inputs to
the code sequence will not produce a fault before the
sequence is executed. This pre-validation can incur signifi-
cant additional overhead. However, with a “rewind only”
transaction (ROT) as described herein, the code sequence
may be speculatively executed without the additional over-
head of validation and may then be rewound if a fault occurs.

Discarding or “rewinding” the storage-modifying effects
of a store instruction has traditionally not been supported in
prior processors, and therefore the amount of speculation
permitted for a store instruction (and for instructions depen-
dent on that store instruction) was severely limited. As
described herein, the mechanisms supporting transactional
memory may be adapted, reused and extended to efficiently
support a discardable speculative execution mechanism for
blocks of instructions, specifically those including store
instructions. Without the enhancements described herein, a
full memory transaction would be required to rewind store
instructions, at additional cost as described below.

To support rewinding the storage-modifying effects of
store instructions, a distinct type of memory transaction
referred to herein as a “rewind only” transaction (ROT) is
introduced. Unlike a traditional memory transaction, a ROT,
by definition, does not require any conflict detection or
atomicity guarantees, but rather only provides a semantic to
enforce the discarding of the execution results of a group of
one or more speculatively executed instructions that may
include one or more store instructions. Furthermore, the
commitment of a ROT does not depend upon or require the
propagation of the invalidations of causally dependent non-
transactional stores through the distributed shared memory
system, as described above with reference to block 804 of
FIG. 8.

While conflict detection is not required for the semantic
definition of a ROT, a typical implementation will provide
conflict tracking for store instructions within the ROT, if
only to avoid additional unnecessary complexity in the
design of the processor core and cache hierarchy at little
additional benefit. So while conflict tracking is not required
for a ROT as a matter of definition (because atomicity is not
preserved by a ROT), as a matter of implementation, hard-
ware supporting execution of ROTs will typically provide
conflict tracking for the store footprint of a ROT for sim-
plicity.

The utility of retaining store footprint conflict tracking for
ROTs can be seen in the management of conflicts between
different threads on a multi-threaded processor core sharing
a common write-through .1 cache. In such a multi-threaded
processor core, if multiple threads were concurrently execut-
ing ROTs including store instructions targeting a given
cache line, the L1 cache would have to be able to maintain
a different image of the given cache line for each thread (i.e.,
the L1 cache would have to be able to hold multiple
concurrently active images of any given cache line). Fur-
thermore, when each ROT committed, the L1 cache would
have to be able to merge the updates made to the cache line
by the thread committing the ROT into the remaining
concurrent copy or copies of the cache line—an operation
that is exceptionally complex. In general, it is far more
efficient and less costly to employ the existing conflict
tracking mechanisms for the store footprint of a ROT as if
it were a non-ROT memory transaction.

Typically, load instructions will significantly outnumber
store instructions in a memory transaction. For TM control
logic 380 of a given capacity, a significantly larger transac-
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tion can therefore be accommodated as a ROT rather than a
non-ROT memory transaction (which, in the absence of
ROTs would have to be employed to rewind speculatively
executed store instructions). Furthermore, a ROT can suc-
cessfully complete in the presence of false sharing conflicts
(i.e., a conflict that occurs, for example, when a store
instruction from another thread writes within a cache line in
the footprint of a memory transaction, but does not actually
alter the data being manipulated by the memory transaction).
Because conflicts are tracked on a per cache-line basis and
not on a per-location basis, such false sharing conflicts cause
the failure of memory transactions that are not strictly
required by the definition of a memory transaction, but must
occur due to the limitations of the conflict tracking imple-
mentation. ROTs, however, are more resilient in the pres-
ence of such false sharing conflicts than the non-ROT
memory transactions that would have to be used in the
absence of support for ROTs.

With reference now to FIG. 9, an illustrative example of
a representative ROT 900 is illustrated. ROT 900 may form,
for example, a portion of a multiprocessor program.

ROT 900 begins with a unique instruction, thegin_rot
902, which identifies the beginning of a ROT. Similar to a
normal (i.e., non-ROT) memory transaction 400 of FIG. 4,
the instruction immediately following tbegin_rot instruction
902 is a branch instruction 904 that redirects execution to a
failure handling routine in response to the ROT 900 either
failing or (as explained below) aborting under software
control. Branch instruction 904 is followed by a transaction
body 906, which may contain transactional memory access
(e.g., load and/or store) or other instructions, and possibly
one or more tabort instruction(s) 910. If present, tabort
instruction 910 directs execution of ROT 900 to be aborted
and execution results of ROT 900 to be discarded. Although
not illustrated in FIG. 9, ROT 900 may further optionally
include bypass instructions that determine if ROT 900
should be aborted (e.g., based on a variable value read from
the distributed shared memory system by a transactional
load of the ROT or the availability of a system resource) and
that, responsive to the determination, either cause tabort
instruction 910 to be executed or cause execution to branch
around tabort instruction 910 to one or more transactional
instruction including tend instruction 908, which, when
executed, causes ROT 900 to be committed (and, in par-
ticular, makes the storage-modifying effects of the store
instructions within transaction body 906 non-speculative).

If a tabort instruction 910 within a ROT 900 is executed,
the execution results of ROT 900 are discarded, a condition
code register is updated to indicate that a tabort instruction
910 caused the ROT to fail, and control passes to branch
instruction 904, which is taken based on the value present in
the condition code register. Execution of a tabort instruction
910 is the primary way in which the speculative execution
results of a ROT 900 are discarded and control is passed to
the fail handler via branch instruction 904. Among other
reasons, a ROT 900 (or non-ROT memory transaction) may
also fail and pass control to the fail handler via branch
instruction 904 (or branch instruction 404) due to a capacity
overflow (overflowing the capacity of TM logic 380) or due
to execution of an instruction (e.g., a cache-inhibited load or
store instruction) that can have untracked side effects and
therefore is inherently unable to be re-executed and conse-
quently cannot legally appear in a ROT or memory trans-
action (which may have to be executed several times to
successfully commit).

Referring now to FIG. 10, there is illustrated a more
detailed view of TM tracking logic 381 in accordance with
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one embodiment. As depicted, TM tracking logic 381
includes a TM directory 1000, which contains a number of
entries 1002 for tracking the cache lines within the load and
store footprints of ROTs and/or non-ROT memory transac-
tions. In the depicted embodiment, each entry 1002 within
TM directory 1000 includes three fields: address tag field
1004, load valid (LV) field 1006, and store valid (SV) field
1008. Address tag field 1004 indicates the real memory
address of a cache line that is in the footprint of the ROT or
non-ROT memory transaction. SV field 1006 and LV field
1008 respectively indicate whether the cache line is part of
the store footprint or load footprint of the memory transac-
tion. In at least one embodiment, LV field 1006 and SV field
1008 are mutually exclusive, meaning that, for a given entry
1002, one or neither of LV field 1006 and SV field 1008 may
be set concurrently but not both. When both of fields 1006
and 1008 are reset, the entry 1002 is invalid and no cache
line is then being tracked by that entry 1002.

For a non-ROT memory transaction, when a transactional
load is presented to TM logic 380 and there is no entry in TM
directory 1000 for the target cache line of the transactional
load, a new entry 1002 is allocated (possibly evicting an
existing entry 1002), the address tag field 1004 of the new
entry is updated with the address tag of the target cache line,
and the LV field 1006 is set. If, on the other hand, an existing
entry 1002 is already tracking the target cache line (and
therefore either LV field 1006 or SV field 1008 is already
set), no update to the existing entry 1002 is made because the
target cache line of the transactional load is already being
tracked.

As with a transactional load, if a transactional store of a
non-ROT memory transaction is presented to TM logic 380
and there is no entry in TM directory 1000 for the target
cache line of the transactional store, a new entry 1002 is
allocated (possibly evicting an existing entry 1002), the
address tag field 1004 of the new entry is updated with the
address tag of the target cache line, and the SV field 1008 is
set. If, on the other hand, an existing entry 1002 is already
tracking the target cache line and LV field 1006 is set for that
entry 1002, then LV field 1006 is reset, and SV field 1008 is
set to indicate that this cache line is now part of the store
footprint for the memory transaction. If SV field 1008 is
already set for the existing entry 1002, no update to entry
1002 is performed.

In response to a ROT or non-ROT memory transaction
committing or failing, TM tracking logic 381 clears the
entries 1002 in TM directory 1000.

For a ROT, TM tracking logic 381 updates TM directory
1000 as described above for transactional stores of non-ROT
memory transactions. However, for loads within the ROT,
TM tracking logic 381 does not update TM directory 1000
because the load footprint is not tracked for conflicts in a
ROT. This behavior can be implemented in at least two
ways. In a first implementation, all non-transactional load
and store operations transmitted from a processor core 200
to its L2 cache 230 are identified as either being a non-
transactional load or store, a non-ROT transactional load or
store, or as a ROT transactional load or store. In this case,
TM tracking logic 381 ignores ROT transactional loads for
purposes of updating TM directory 1000. In another imple-
mentation, all non-transactional loads and stores and ROT
loads are identified as being non-transactional and are
accordingly ignored by TM tracking logic 381 for purposes
of updating TM directory 1000. ROT transactional stores
and non-ROT transactional loads and stores are identified as
being transactional, and TM tracking logic 381 accordingly
updates TM directory 1000 as described above for non-ROT
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transactional loads and stores. In either implementation, TM
tracking logic 381 preferably does not update TM directory
1000 for ROT transactional loads.

With reference now to FIG. 11, there is illustrated a high
level logical flowchart of a method of processing of a tend
instruction terminating a non-ROT memory transaction or a
ROT in accordance with one embodiment. For ease of
understanding, like reference numerals are utilized to denote
steps corresponding to those depicted in FIG. 8.

The process of FIG. 11 begins at block 800, for example,
in response to initiation of execution of a tend instruction
within the LSU 202 of a processor core 200. LSU 202 then
ensures at block 801 that all prior suspend mode load
instructions and all prior non-ROT transactional load
instructions have their values bound. This check ensures the
non-ROT transactional load instructions are present in the
memory transaction’s footprint and that the suspend mode
load instructions have obtained their values. LSU 202 then
determines at block 1100 whether or not the memory trans-
action terminated by the tend is a ROT or non-ROT memory
transaction. In response to a determination that the memory
transaction is a non-ROT memory transaction, the process
continues to block 802 and subsequent blocks, which have
been described.

Returning to block 1100, in response to a determination
that the tend instruction terminates a ROT, blocks 802, 804
and 806 are bypassed as unnecessary for a ROT, and control
passes to block 1102. Block 1102 depicts LSU 202 querying
TM logic 380 whether a conflict for the ROT’s store
footprint was detected by TM tracking logic 381 (as opposed
to a conflict on either the load or store footprint for a
non-ROT memory transaction). In response to TM logic 380
indicating a conflict has been detected for the store footprint
of the ROT, the process proceeds to block 808, which
depicts failing the ROT and invalidating its store footprint as
described above. In response to TM logic 380 indicating at
block 1102 that no conflict for the ROT has been detected,
the process proceeds to block 810, which illustrates com-
mitment of the ROT to the distributed shared memory
system as described above. It should again be noted that
commitment of the ROT does not require observance of
causality, as described above with reference to block 804.
Following either block 808 or block 810, the process con-
cludes at block 812.

In at least some embodiments, memory transactions,
including ROTs and/or non-ROT transactions, can be nested
to any arbitrary depth, meaning that a ROT or a non-ROT
transaction can contain one or more other memory transac-
tions. In at least some embodiments, so-called “flat nesting”
is preferably employed in which memory transactions con-
tained within the outermost memory transaction are sub-
sumed by the outermost enclosing memory transaction into
a single memory transaction that either commits as a whole
or fails as a whole.

With reference now to FIG. 12, there is illustrated a
representative non-ROT memory transaction 1200, which
contains a nested memory transaction. Memory transaction
1200 may, for example, form a portion of a multiprocessor
program.

As before, an outermost or enclosing memory transaction
1200 begins at a tbegin instruction 1202, which is followed
by a branch instruction 1204 that, if the indicated branch is
taken, invokes execution of a first fail handler routine.
Outermost memory transaction 1200 additionally includes a
transaction body 1206 that includes transactional memory
access (e.g., load and/or store) instructions and optionally
one or more additional instructions.
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Transaction body 1206 further includes a nested memory
transaction 1208 initiated by tbegin instruction 1210, which
is followed by a branch instruction 1216 that, if the indicated
branch were to be taken, would redirect execution to a
second fail handler routine associated with nested memory
transaction 1208. Nested memory transaction 1208 addition-
ally includes a transaction body 1212 comprising one or
more transactional memory access (e.g., load and/or store)
instructions, zero or more optional additional instructions,
and a tend instruction 1214.

In the example shown, the branch to the second fail
handler routine will never be taken because any conflict
detected for memory transaction 1200 will redirect execu-
tion to branch instruction 1204. Despite this fact, a branch
instruction to a fail handler routine is typically provided for
all memory transactions because of the difficulty in deter-
mining, a priori, whether or not a memory transaction will
be executed as part of a nested memory transaction. (For
example, a given memory transaction could be executed
directly or could alternatively be executed as part of a
function call within another memory transaction. In the
former case, the memory transaction would not be nested,
while in the latter the memory transaction would be nested.)

To implement the “flat nesting” noted above, the load and
store footprints of memory transaction 1200 include the sets
of memory addresses accessed by transactional load and
store instructions, respectively, within transaction bodies
1206 and 1212. In addition, if a tabort instruction were to be
executed anywhere within memory transaction 1200, control
would transfer to branch instruction 1204. In essence, thegin
instruction 1210 and tend instruction 1214 of nested
memory transaction 1208 act like nop (noop) instructions,
with the exception of causing updates to be made to a
nesting level register and transaction mode register as
described below. It should be further noted that memory
transaction 1208 could be replaced by a ROT without any
change in the handling of the nested memory transactions.

In at least some embodiments, one or more ROT or
non-ROT memory transactions may also be nested within a
ROT. For example, FIG. 13 illustrates a ROT 1300 that
begins at a tbegin_rot instruction 1302, which is followed by
a branch instruction 1304 that, if the indicated branch is
taken, invokes execution of a third fail handler routine. ROT
1300 additionally includes a transaction body 1306 that
includes transactional memory access (e.g., load and/or
store) instructions, optionally one or more additional
instructions, and optionally a tabort instruction 1320. In the
illustrated example, transaction body 1306 further includes
a nested non-ROT memory transaction 1208 as previously
described. In one preferred embodiment, transactional
memory access instructions within a ROT (e.g., 1d A and st
B) that precede a nested non-ROT memory transaction (e.g.,
memory transaction 1208) are handled as ROT transactional
memory accesses as described above with reference to
FIGS. 9-11, and transactional memory access instructions
within a ROT that fall within or follow a nested non-ROT
memory transaction (e.g., 1d C, 1d D, st E, st F and 1d G) are
handled as non-ROT transactional memory accesses as
described above with reference to FIGS. 7-8. In other words,
once a nested memory transaction enters a non-ROT mode,
either at the initial thegin instruction or at a subsequent
nested thegin instruction (such as thegin instruction 1210 in
ROT 1300), the memory transaction remains in a non-ROT
mode for the remainder of all the nested memory transac-
tions, regardless of memory transaction type. In this manner,
nested transactions retain the advantages of a ROT until the
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first, potentially nested, non-ROT transaction in the overall
collection of nested transactions is encountered.

To support nested memory transactions, TM tracking
logic 381 is preferably augmented as depicted in FIG. 14. As
depicted, in additional to the previously described TM
directory 1000, TM tracking logic 381 includes a transaction
mode register 1400 and a nesting level register 1402. Trans-
action mode register 1400 indicates a current mode of a
memory transaction under execution (e.g., ROT or non-
ROT). For nested memory transactions in which all the
nested transactions are the same type, transaction mode
register 1402 is set at the outermost thegin or thegin_rot
instruction and retains its value throughout the nested
memory transaction. Nesting level register 1402 indicates
the current nesting depth of the memory transaction under
execution. At each tbegin or thegin_rot instruction within
the nested memory transactions, nesting level register 1402
is incremented, and at each tend instruction within the nested
transactions, nesting level register 1402 is decremented. If
the nesting level exceeds the nesting depth that can be
expressed by nesting level register 1402, the tbegin instruc-
tion fails at execution, setting a condition code, and execu-
tion of the fail handler routine is invoked.

Referring now to FIG. 15, there is depicted a high level
logical flowchart of the processing of transaction memory
requests corresponding to instructions delimiting nested
memory transactions (e.g., tbegin, tbegin_rot, and tend
instructions) of possibly differing types (ROT and/or non-
ROT memory transactions). The illustrated process begins at
block 1500 and proceeds to block 1502, which depicts TM
logic 380 determining if a tbegin or tbegin_rot request
corresponding to a thegin or thegin_rot instruction initiating
a memory transaction has been received from the affiliated
processor core 200. If not, the process passes to block 1520,
which is described below. If so, the process proceeds to
block 1504, which depicts TM control logic 382 testing
nesting level register 1402 to determine if nesting of
memory transactions has reached its maximum supported
depth, for example, as determined by the size of nesting
level register 1402. If so, TM control logic 382 sets a
condition code register in processor core 200 to indicate the
error condition that the memory transaction nesting has
exceeded the maximum allowable depth (block 1506). The
process then returns to block 1502, which has been
described.

Returning to block 1504, in response to TM control logic
382 determining the maximum nesting level is not exceeded,
TM tracking logic 381 sets transaction mode register 1400
to indicate the appropriate mode of operation (i.e., ROT or
non-ROT) utilizing, for example, the process illustrated at
blocks 1508-1516. In particular, TM tracking logic 381
determines at block 1508 if the nesting level is zero (i.e., if
the thegin or tbegin_rot request corresponds to the initiation
of'an outermost or enclosing memory transaction). If not, the
process passes to block 1510, which is described below. If,
however, the nesting level is equal to zero, TM tracking
logic 381 further determines at block 1512 whether the
memory transaction is a ROT (i.e., the memory transaction
request is a tbegin_rot request). If not (i.e., the memory
transaction request is a thegin request corresponding to the
thegin instruction of a non-ROT memory transaction), the
process proceeds to block 1516, which illustrates TM track-
ing logic 381 setting transaction mode register 1400 to
indicate a non-ROT mode. If, on the other hand, TM
tracking logic 381 determines at block 1512 that the memory
transaction request is a thegin_rot request corresponding to
a tbegin_rot instruction initiating a ROT, TM tracking logic
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381 sets transaction mode register 1400 to indicate a ROT
mode (block 1514). After either block 1514 or block 1516,
the process then proceeds to block 1518, which is described
below.

Referring now to block 1510, which is reached only if the
detected memory transaction is a nested memory transaction
enclosed within another enclosing memory transaction, TM
tracking logic 381 determines if the memory transaction
request is a tbegin request corresponding to a nested non-
ROT memory transaction initiated by a thegin instruction (as
opposed to a thegin_rot). If so, TM tracking logic 381 sets
transaction mode register 1400 to indicate a transition to the
non-ROT mode at block 1516. If, however, TM tracking
logic 381 determines at block 1510 that the memory trans-
action request is a thegin_rot request corresponding to a
thegin_rot instruction initiating a nested ROT, the process
then proceeds directly to block 1518 without updating
transaction mode register 1400. To summarize, TM tracking
logic 381, responsive to memory transaction requests (i.e.,
thegin and thegin_rot requests) corresponding to tbegin and
thegin_rot instructions, sets transaction mode register 1400
to the transaction mode corresponding to the type of the
outermost memory transaction (ROT or non-ROT) and then
sets transaction mode register 1400 to non-ROT mode in
response to encountering any subsequent non-ROT memory
transaction nested within the outermost memory transaction.

At depicted at block 1518, TM control logic 381, respon-
sive to the thegin or thegin_rot request corresponding to a
thegin or thegin_rot instruction initiating a memory trans-
action, also increments nesting level register 1402 to indi-
cate the present depth of nesting. The process then returns to
block 1502, which has been described.

Referring now to block 1520, TM tracking logic 381
determines whether the received request is a tend request
corresponding to execution of a tend instruction that termi-
nates a memory transaction. If not, the process returns to
block 1502 to await receipt of the next tbegin, tbegin_rot, or
tend request, as has been described. If, however, TM track-
ing logic 381 determines that the memory transaction
request is a tend request generated by execution of a tend
instruction in the affiliated processor core 200, TM tracking
logic 381 queries nesting level register 1402 to determine if
the current nesting level is greater than one, indicating that
the tend instruction does not terminate the outermost
memory transaction of a collection of nested memory trans-
actions. If so, TM tracking logic 381 simply decrements
nesting level register 1402 to update the current nesting
depth (block 1552). In other respects, the tend request and
associated tend instruction are treated as a no-ops, as noted
above. The process then returns to block 1502.

Returning to block 1550, if nesting level register 1402 has
a value not greater than one, the process proceeds to block
1554, which depicts TM tracking logic 381 determining if
the nesting level indicated by nesting level register 1402
equals one, indicating that the tend instruction correspond-
ing to the received tend request terminates the outermost
memory transaction. If so, the tend request is processed
according to the process described above with reference to
FIG. 11 (block 1556). In addition, TM tracking logic 381
decrements the nesting level indicated by nesting level
register 1402, as described above with reference to block
1552.

Returning to block 1554, if the nesting level indicated by
nesting level register 1402 is not one, then the nesting level
must be zero (i.e., not one or greater than one). This
condition indicates that an error has occurred due to the fact
that a tend instruction has been executed without a corre-
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sponding thegin or thegin_rot instruction. Accordingly, TM
tracking logic 381 sets an error indication to indicate detec-
tion of this error (block 1558). Thereafter, the process
returns to block 1502 to await the next tbegin, tbegin_rot, or
tend request.

Referring now to FIG. 16, there is depicted a conventional
instruction sequence 1600 that includes an instruction pair
that is intended to effect a conditional atomic update of a
shared memory system. In particular, instruction sequence
1600 includes a load-and-reserve instruction (hereafter
referred to by the mnemonic larx) 1602 that reads the value
of a memory location and a store-conditional instruction
(hereafter referred to by the mnemonic stcx) 1606 that
conditionally updates the same memory location, if and only
if the value read by larx instruction 1602 is a non-stale value
(i.e., the latest value for the location in the coherence order
for that memory location) at execution of the stcx instruction
1606. Otherwise, the conditional atomic update to the
memory location will fail.

Upon execution of larx instruction 1602 by processor core
200, a load request is passed to L2 cache 230, and reserva-
tion control logic 390 (see, e.g., FIG. 3) places a so-called
“reservation” on the target cache line containing the memory
location read by larx instruction 1602 by setting reservation
flag 392 if the value returned by larx instruction 1602 is
non-stale and by loading reservation address register 391
with the address of the target cache line. Until reservation
flag 392 is reset, reservation control logic 390 detects any
storage updates to the cache line identified by reservation
address register 391 by another processor core 200 and
resets reservation flag 392 in response to detecting any such
storage update.

Add instruction 1604 then updates the value read from the
memory location (in this example, by adding one to the
value read from the memory location). Of course, any of a
variety of computations can be performed in lieu of add
instruction 1604 to provide the particular type of atomic
update desired by software. Stcx instruction 1606 then
attempts to update the memory location with the updated
value. If reservation flag 392 is still set and stcx instruction
1606 can obtain write permission for the cache line and write
the cache line before any additional update to the cache line
containing the memory location occurs, the conditional
atomic storage update succeeds and sets a condition code
register in processor core 200 to indicate success. If, on the
other hand, stcx instruction 1604 cannot obtain write per-
mission and write the target cache line before any additional
storage update to the target cache line occurs or before
reservation flag 392 is reset, the conditional atomic storage
update fails (i.e., does not update memory) and sets a
condition code register in processor core 200 to indicate
failure. Branch instruction 1608 tests the condition code
register for failure, and in response to detecting failure of the
conditional atomic update to memory, transfers control back
to larx instruction 1602 to again attempt the atomic update
of memory. Whenever a processor core 200 executes a stcx
instruction (whether successful or not), reservation control
logic 390 of the associated [.2 cache 230 resets reservation
flag 392. Similarly, whenever a processor core 200 executes
a larx instruction, reservation control logic 390 of the
associated 12 cache 230 overwrites any existing values in
reservation address register 391 and reservation flag 392
with values for the most recently executed larx instruction.

A larx/stcx instruction pair with the proper looping con-
struct achieves an atomic update by repeating the read,
compute, and conditional write process until the conditional
write can successfully commit in an atomic fashion. In
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general, several iterations of the loop construct may need to
be executed in order for the stcx instruction to successfully
make the conditional atomic update to memory. Semantics
for the interaction of memory transactions and atomic
memory updates will now be described.

With reference now to FIG. 17, there is shown a repre-
sentative memory transaction 1700 that may, for example,
form a portion of a multiprocessor program. Memory trans-
action 1700 has a number of associated larx/stcx instruction
pairs that will be failed by the exemplary data processing
architecture described herein based on the placement of the
larx/stcx instructions relative to memory transaction 1700.
Such conditional atomic update failures are in addition to
failures that may opportunistically be caused by competing
updates by other processor cores 200.

In FIG. 17 (and in subsequent FIGS. 18, 19 and 20), the
branch instructions typically following the stcx instruction
of each larx/stcx instruction pair and the fail handler branch
instruction of the memory transaction that redirects execu-
tion to the fail handler routine are omitted for clarity. As
previously described, memory transaction 1700 of FIG. 17
begins with a tbegin instruction 1702, ends with a tend
instruction 1704, and includes a suspended region 1706
initiated by a tsuspend instruction 1708 and terminated by a
tresume instruction 1710.

A first larx/stcx instruction pair, which includes larx
instruction 1720 and stcx instruction 1722, straddles the
thegin instruction 1702 that initiates memory transaction
1700. If execution of memory transaction 1700 were to be
repeated due to an occurrence of a conflict, larx instruction
1720 may be not executed again, and the stcx instruction
1722 could fail repeatedly. Even if the loop construct
associated with larx instruction 1720 and stcx instruction
1722 were to loop execution back to larx instruction 1720,
that construction would cause tbegin instruction 1702 of
memory transaction 1700 to execute again and increase the
nesting level incorrectly. As such, reservation control logic
390 preferably resets reservation flag 392 in response to a
thegin request corresponding to execution of the outermost
thegin instruction (or a the outermost and all nested thegin
instructions in an alternative embodiment), thus causing the
failure of any larx/stcx instruction pair that straddles such a
thegin instruction.

A second larx/stex instruction pair, which includes larx
instruction 1724 and stcx instruction 1726, similarly
straddles tsuspend instruction 1708. In this case, stcx
instruction 1726 should not be allowed to succeed because
the success or failure of its conditional atomic memory
update is based on a transactional larx instruction 1724 that
may be flushed and re-attempted, but stcx instruction 1726
(if it were to succeed) would be unconditionally written to
the shared system memory because of its location within
suspended region 1706 of memory transaction 1700. For this
reason, reservation control logic 390 preferably fails any
stcx instruction in a suspended region based on a reservation
established within the memory transaction but outside of the
suspended region.

A third larx/stcx instruction pair, which includes larx
instruction 1728 and stcx instruction 1730, straddles the
tresume instruction 1710 that terminates suspended region
1706. For consistency with cases in which larx/stcx instruc-
tion pairs straddle a tsuspend instruction (e.g., tsuspend
instruction 1708), reservation control logic 390 preferably
clears reservation flag 392 in cases in which a larx/stcx
instruction pair straddles a tresume instruction (e.g., tresume
instruction 1710), in this case causing the conditional atomic
update indicated by stcx instruction 1730 to fail.
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The illustrative instruction sequence given in FIG. 17
finally includes a fourth larx/stcx instruction pair including
larx instruction 1732 and stcx instruction 1734, which
straddle the tend instruction 1704 terminating memory trans-
action 1700. In this case, reservation control logic 390
preferably resets reservation flag 392 in response to the tend
request corresponding to execution of tend instruction 1704
in order to avoid leaving a reservation established within
memory transaction 1700 active after memory transaction
1700 commits.

In each of these four cases, allowing a reservation to
remain active through the state change implied by tbegin,
tsuspend, tresume, tend instructions leads to undesirable
behaviors. Consequently, the architecture disclosed herein
prevents or at least ameliorates these behaviors by resetting
reservation flag 392 to cancel the active reservation.

Referring now to FIG. 18, there is shown an illustrative
instruction sequence including a memory transaction 1800
and a larx/stcx instruction pair, including a larx instruction
1802 and stcx instruction 1804, that straddles the entire
memory transaction 1800. In this case, reservation control
logic 390 preferably resets reservation flag 392 as described
above with reference to FIG. 17, and the conditional atomic
memory update indicated by stcx instruction 1704 will fail.
However, in an alternative embodiment, reservation control
logic 390 can be configured to detect the scenario indicated
in FIG. 18 in which the reservation spans an entire memory
transaction and allow the conditional atomic memory update
indicated by stcx instruction 1804 to succeed. In general,
however, good programming practice limits the number and
type of intervening instructions spanned by a larx/stcx
instruction pair to increase the likelihood that the conditional
atomic update indicated by the larx/stcx instruction pair may
succeed. The present invention encourages this preferred
programming practice by rendering ineffective any larx/stcx
instruction pair spanning the beginning and/or end of a
memory transaction.

With reference now to FIG. 19, there is shown a repre-
sentative memory transaction 1900 including various larx/
stcx instruction pairs that are architecturally permitted to
succeed (but may nevertheless fail due to a conflicting
storage update). Representative memory transaction 1900
may, for example, form a portion of a multiprocessor pro-
gram.

As previously described, memory transaction 1900 of
FIG. 19 begins with a tbegin instruction 1902, ends with a
tend instruction 1904, and includes a suspended region 1906
initiated by a tsuspend instruction 1908 and terminated by a
tresume instruction 1910. Within memory transaction 1900,
a first larx/stcx instruction pair including larx instruction
1920 and stex instruction 1922 is entirely enclosed within
the transactional instruction region of memory transaction
1900. As such, barring conflicts due to updates by other
processor cores 200, stcx instruction 1922 may succeed.
However, even if stcx instruction 1922 succeeds, like any
other transactional store within memory transaction 1900,
the memory update is not finally committed to the distrib-
uted shared memory system and made visible to other
threads unless and until memory transaction 1900 commits.

Memory transaction 1900 also includes a second larx/stcx
instruction pair including larx instruction 1924 and stcx
instruction 1926, which span suspended region 1906
bounded by tsuspend and tresume instructions 1908 and
1910. Unlike the case described above with reference to
FIG. 18, in order to facilitate debugging (which may be the
purpose of the suspend region), a larx/stcx instruction pair
like that comprising instructions 1924 and 1926 is allowed
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to succeed, presuming no intervening conflicting memory
update of another processor core 200 is detected. Addition-
ally, allowing a reservation to survive over a suspend region
allows the reservation to survive short interrupts such as
short system calls or to allow the emulation of unimple-
mented instructions by lower level software (e.g., a virtual
machine monitor or hypervisor) in a manner that is invisible
to application programs. As further shown in FIG. 20, a
larx/stcx instruction pair (e.g., instructions 2020 and 2022)
contained entirely within a suspended region 2006 of a
transaction 2000 may also succeed in the absence of an
intervening conflicting memory update from another pro-
cessor core 200.

With reference now to FIG. 21, there is shown an exem-
plary transaction 2100 containing a larx/stcx instruction pair
(e.g., larx instruction 2104 and stcx instruction 2108) as well
as a tabort instruction 2106. Larx instruction 2104 is
executed first and accordingly causes a reservation to be
established in reservation control logic 390. Tabort instruc-
tion 2106 then executes, causing memory transaction 2100
to fail, instruction execution to transition out of transactional
mode, and control to transfer to branch instruction 2102. At
the execution of tabort instruction 2106, memory transaction
2100 terminates and any reservation established during
memory transaction 2100 is canceled, much in the same way
that any reservation established in a memory transaction is
canceled in response to execution of the outermost tend
instruction (or a nested tend instruction in an alternative
embodiment) as shown in FIG. 17. Also, if a conflict occurs
(e.g., after the execution of larx instruction 2104 and before
execution of tabort instruction 2106), control can also be
transferred to branch instruction 2102, and if so, the reser-
vation established by larx instruction 2104 is canceled. In
summary, any transfer of control to the fail handler routine,
in response to either execution of an explicit instruction
(e.g., tabort instruction 2106) or occurrence of a conflict,
causes the reservation to be canceled. Cancellation of the
reservation in this manner prevents a reservation established
in the memory transaction from erroneously remaining
active during execution of the fail handler routine.

With reference now to FIG. 22 there is depicted a high
level logical flowchart of an exemplary embodiment of a
method of processing larx and stcx requests in the presence
of memory transactions. Each pass through the flowchart
represents processing by an [.2 cache 230 of a particular
request received by that L2 cache 230 in response to
execution of an instruction by the associated processor core
200. The illustrated processing occurs in addition to the
normal management of reservations and tracking for con-
flicting operations (not illustrated) also performed by reser-
vation control logic 390.

The process begins at block 2200 in response to receipt by
L2 cache 230 of a request from the associated processor core
200 in response to execution of an instruction by that
processor core 200. The process then proceeds to block
2202, which illustrates TM logic 380 determining if the
request received from processor core 200 is a memory
transaction request corresponding to execution of a tbegin or
thegin_rot instruction by the associated processor core 200.
If a memory transaction request corresponding to execution
of a thegin or tbegin_rot instruction is not detected at block
2202, the process passes to block 2210, which is described
below. If however, TM logic 380 detects a memory trans-
action request corresponding to execution of a tbegin or
thegin_rot instruction that initiates a memory transaction,
the process proceeds from block 2202 to optional block
2204, which depicts TM logic 380 determining whether or
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not the memory transaction initiated by the tbegin or tbe-
gin_rot instruction is nested, for example, by determining
whether nesting level register 1402 has a value of zero. If
not, meaning that the present memory transaction is nested
within another memory transaction, the process returns to
block 2202, which has been described. If, however, block
2204 is omitted or a determination is made at block 2204
that the present memory transaction is not nested, the
process proceeds to block 2206. Block 2206 depicts TM
logic 380 resetting reservation flag 392 to cancel any pend-
ing reservation. In other words, if optional block 2204 is
included, TM logic 380 resets reservation flag 392 only at
the initiation of the outermost memory transaction, and if
optional block 2204 is omitted, TM logic 380 resets reser-
vation flag 392 at the initiation of each memory transaction,
whether or not it is nested. Following block 2206, the
process returns to block 2202, which has been described.

Referring now to block 2210, TM logic 380 determines
whether or not the request received from the associated
processor core 200 is a tend request corresponding to
execution by the associated processor core 200 of a tend
instruction terminating a memory transaction. If a tend
request is not detected at block 2210, the process passes to
block 2220, which is described below. In response to detec-
tion of a tend request at block 2210, the process proceeds to
optional block 2212, which depicts TM logic 380 determin-
ing whether or not the memory transaction terminated by the
tend instruction is nested, for example, by determining
whether nesting level register 1402 has a value of one. If so,
the process proceeds to block 2206, which depicts TM logic
380 resetting reservation flag 392 to cancel any pending
reservation. If, however, TM logic 380 determines that the
current memory transaction is nested (e.g., nesting level
register has a value greater than one), control transfers to
block 2202, which has been described. In other words, if
optional block 2212 is included, TM logic 380 resets res-
ervation flag 392 only at termination of the outermost
memory transaction, and if optional block 2212 is omitted,
TM logic 380 resets reservation flag 392 to cancel any
pending reservation at the termination of all memory trans-
actions, including nested memory transactions.

Referring now to block 2220, TM logic 380 determines
whether the request received from the associated processor
core 200 is a tabort request corresponding to execution of a
tabort instruction by the associated processor core 200 and
additionally monitors for occurrence of a conflict, as indi-
cated, for example, by assertion of TM killed indication 385
(see, e.g., FIG. 3). If neither a tabort request or conflict is
detected, the process passes to block 2222, which is
described below. However, in response to detecting a tabort
request corresponding to execution of a tabort instruction or
in response to occurrence of a conflict, the memory trans-
action will fail, and control will be transferred to the fail
handler routine. Accordingly, TM logic 380 resets reserva-
tion flag 392 to cancel any pending reservation, as depicted
at block 2206.

Referring now to block 2222, TM logic 380 determines
whether the request received from the associated processor
core 200 is a tsuspend request corresponding to execution of
a tsuspend instruction by the associated processor core 200.
If not, the process proceeds to block 2226, which is
described below. If, however, TM logic 380 detects a
tsuspend request corresponding to execution of a tsuspend
instruction, TM logic 380 sets a fail stcx flag 1404 (see, e.g.,
FIG. 14) within TM tracking logic 381 (block 2224). When
set, fail stcx flag 1404 indicates that the memory transaction
has entered a suspended region and that any stcx instruction
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that is encountered before a larx instruction should fail
because the corresponding larx/stcx instruction pair (if pres-
ent) straddle a tsuspend instruction. The process then returns
from block 2224 to block 2202, which has been described.

Referring now to block 2226, TM logic 380 determines
whether the request received from the associated processor
core 200 is a tresume request corresponding to execution of
a tresume instruction by the associated processor core 200.
If not, the process proceeds to block 2230, which is
described below. If, however, TM logic 380 detects a
tresume request corresponding to execution of a tresume
instruction ending a suspended region of a memory trans-
action, TM logic 380 determines at block 2227 whether or
not fail stcx flag 1404 is set. If so, the process passes to block
2234, which is described below. If, however, TM logic 380
determines at block 2227 that the fail stcx flag 1404 is not
set, meaning that a reservation may have been established in
the suspended region of the memory transaction, TM logic
380 resets reservation flag 392 to cancel any pending
reservation prior to exiting the suspended region (block
2228). Thereafter, the process passes to block 2234, which
illustrates TM logic 380 resetting fail stex flag 1404, and
thereafter returns to block 2202. It should be noted that
resetting fail stcx flag 1404 at block 2234 allows a larx/stcx
instruction pair (if present) that spans the entire suspended
region to complete successfully in the absence of other
conflicts.

Referring now to block 2230 and additionally to blocks
2232, 2240 and 2242, while stcx fail flag 1404 is set,
meaning that instructions are being executed in a suspended
region of a memory transaction, reservation control logic
390 monitors for larx and stcx requests corresponding
respectively to execution of larx and stcx instructions by the
associated processor core 200. In response to first detecting
notification of execution of a larx instruction by the asso-
ciated processor core 200 (which establishes a new reser-
vation in the suspended region), reservation control logic
390 resets fail stcx flag 1404 at block 2234 to permit a stcx
instruction within the suspended region (if present) to suc-
ceed in conditionally atomically updating memory. Follow-
ing block 2234, the process returns to block 2202, which has
been described. However, in response to reservation control
logic 390 first detecting, while in a suspended region of a
memory transaction, a stcx request corresponding to execu-
tion of a stcx instruction by the associated processor core
200, meaning that a larx/stcx instruction pair straddles the
boundary of the suspended region, reservation control logic
390 fails the conditional atomic memory update indicated by
the stex instruction, as depicted at blocks 2240-2242. Fol-
lowing block 2242, the process passes to block 2234, which
has been described.

To summarize, the process depicted in FIG. 22 cancels a
reservation (causing the conditional atomic memory update
indicated by a subsequent stcx to fail) or fails a stex directly
in response to detection of execution of an instruction
delimiting a memory transaction (e.g., tbegin, tbegin_rot, or
tend instruction) and in response to transfer of control to the
fail handler routine of the memory transaction, and in
response to execution of a stcx instruction within a sus-
pended region without execution of a prior larx instruction
within that suspended region.

With reference now to FIG. 23, there is depicted a block
diagram of an exemplary design flow 2300 used for
example, in semiconductor IC logic design, simulation, test,
layout, and manufacture. Design flow 2300 includes pro-
cesses, machines and/or mechanisms for processing design
structures or devices to generate logically or otherwise
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functionally equivalent representations of the design struc-
tures and/or devices described above and shown in FIGS.
1-3, 7, 10 and 14. The design structures processed and/or
generated by design flow 2300 may be encoded on machine-
readable transmission or storage media to include data
and/or instructions that when executed or otherwise pro-
cessed on a data processing system generate a logically,
structurally, mechanically, or otherwise functionally equiva-
lent representation of hardware components, circuits,
devices, or systems. Machines include, but are not limited
to, any machine used in an IC design process, such as
designing, manufacturing, or simulating a circuit, compo-
nent, device, or system. For example, machines may
include: lithography machines, machines and/or equipment
for generating masks (e.g. e-beam writers), computers or
equipment for simulating design structures, any apparatus
used in the manufacturing or test process, or any machines
for programming functionally equivalent representations of
the design structures into any medium (e.g. a machine for
programming a programmable gate array).

Design flow 2300 may vary depending on the type of
representation being designed. For example, a design flow
2300 for building an application specific IC (ASIC) may
differ from a design flow 2300 for designing a standard
component or from a design flow 2300 for instantiating the
design into a programmable array, for example a program-
mable gate array (PGA) or a field programmable gate array
(FPGA) offered by Altera® Inc. or Xilinx® Inc.

FIG. 23 illustrates multiple such design structures includ-
ing an input design structure 1020 that is preferably pro-
cessed by a design process 2310. Design structure 2320 may
be a logical simulation design structure generated and pro-
cessed by design process 2310 to produce a logically equiva-
lent functional representation of a hardware device. Design
structure 2320 may also or alternatively comprise data
and/or program instructions that when processed by design
process 2310, generate a functional representation of the
physical structure of a hardware device. Whether represent-
ing functional and/or structural design features, design struc-
ture 2320 may be generated using electronic computer-aided
design (ECAD) such as implemented by a core developer/
designer. When encoded on a machine-readable data trans-
mission, gate array, or storage medium, design structure
2320 may be accessed and processed by one or more
hardware and/or software modules within design process
2310 to simulate or otherwise functionally represent an
electronic component, circuit, electronic or logic module,
apparatus, device, or system such as those shown in FIGS.
1-3, 7, 10 and 14. As such, design structure 2320 may
comprise files or other data structures including human
and/or machine-readable source code, compiled structures,
and computer-executable code structures that when pro-
cessed by a design or simulation data processing system,
functionally simulate or otherwise represent circuits or other
levels of hardware logic design. Such data structures may
include hardware-description language (HDL) design enti-
ties or other data structures conforming to and/or compatible
with lower-level HDL design languages such as Verilog and
VHDL, and/or higher level design languages such as C or
C++.

Design process 2310 preferably employs and incorporates
hardware and/or software modules for synthesizing, trans-
lating, or otherwise processing a design/simulation func-
tional equivalent of the components, circuits, devices, or
logic structures shown in FIGS. 1-3, 7,10 and 14 to generate
a netlist 2380 which may contain design structures such as
design structure 2320. Netlist 2380 may comprise, for
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example, compiled or otherwise processed data structures
representing a list of wires, discrete components, logic gates,
control circuits, I/O devices, models, etc. that describes the
connections to other elements and circuits in an integrated
circuit design. Netlist 2380 may be synthesized using an
iterative process in which netlist 2380 is resynthesized one
or more times depending on design specifications and
parameters for the device. As with other design structure
types described herein, netlist 2380 may be recorded on a
machine-readable storage medium or programmed into a
programmable gate array. The medium may be a non-
volatile storage medium such as a magnetic or optical disk
drive, a programmable gate array, a compact flash, or other
flash memory. Additionally, or in the alternative, the medium
may be a system or cache memory, or buffer space.

Design process 2310 may include hardware and software
modules for processing a variety of input data structure
types including netlist 2380. Such data structure types may
reside, for example, within library elements 2330 and
include a set of commonly used elements, circuits, and
devices, including models, layouts, and symbolic represen-
tations, for a given manufacturing technology (e.g., different
technology nodes, 32 nm, 45 nm, 90 nm, etc.). The data
structure types may further include design specifications
2340, characterization data 2350, verification data 2360,
design rules 2370, and test data files 2385 which may
include input test patterns, output test results, and other
testing information. Design process 2310 may further
include, for example, standard mechanical design processes
such as stress analysis, thermal analysis, mechanical event
simulation, process simulation for operations such as cast-
ing, molding, and die press forming, etc. One of ordinary
skill in the art of mechanical design can appreciate the extent
of possible mechanical design tools and Application used in
design process 2310 without deviating from the scope and
spirit of the invention. Design process 2310 may also
include modules for performing standard circuit design
processes such as timing analysis, verification, design rule
checking, place and route operations, etc.

Design process 2310 employs and incorporates logic and
physical design tools such as HDL compilers and simulation
model build tools to process design structure 2320 together
with some or all of the depicted supporting data structures
along with any additional mechanical design or data (if
applicable), to generate a second design structure 2390.
Design structure 2390 resides on a storage medium or
programmable gate array in a data format used for the
exchange of data of mechanical devices and structures (e.g.,
information stored in a IGES, DXF, Parasolid XT, JT, DRG,
or any other suitable format for storing or rendering such
mechanical design structures). Similar to design structure
2320, design structure 2390 preferably comprises one or
more files, data structures, or other computer-encoded data
or instructions that reside on transmission or data storage
media and that when processed by an ECAD system gen-
erate a logically or otherwise functionally equivalent form of
one or more of the embodiments of the invention shown in
FIGS. 1-3, 7, 10 and 14. In one embodiment, design struc-
ture 2390 may comprise a compiled, executable HDL simu-
lation model that functionally simulates the devices shown
in FIGS. 1-3, 7, 10 and 14.

Design structure 2390 may also employ a data format
used for the exchange of layout data of integrated circuits
and/or symbolic data format (e.g., information stored in a
GDSII (GDS2), GL1, OASIS, map files, or any other
suitable format for storing such design data structures).
Design structure 2390 may comprise information such as,
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for example, symbolic data, map files, test data files, design
content files, manufacturing data, layout parameters, wires,
levels of metal, vias, shapes, data for routing through the
manufacturing line, and any other data required by a manu-
facturer or other designer/developer to produce a device or
structure as described above and shown in FIGS. 1-3, 7, 10
and 14. Design structure 2390 may then proceed to a stage
2395 where, for example, design structure 2390: proceeds to
tape-out, is released to manufacturing, is released to a mask
house, is sent to another design house, is sent back to the
customer, etc.

As has been described, in at least one embodiment, a
multiprocessor data processing system has a distributed
shared memory system. A memory transaction that is a
rewind-only transaction (ROT) and that includes one or
more transactional memory access instructions and a trans-
actional abort instruction is executed. In response to execu-
tion of the one or more transactional memory access instruc-
tions, one or more memory accesses to the distributed shared
memory system indicated by the one or more transactional
memory access instructions are performed. In response to
execution of the transactional abort instruction, execution
results of the one or more transactional memory access
instructions are discarded and control is passed to a fail
handler.

In at least one embodiment, first and second nested
memory transactions are executed in a multiprocessor data
processing system having a distributed shared memory
system, where the first memory transaction is a rewind-only
transaction (ROT) and the second memory transaction is a
non-ROT memory transaction. The first memory transaction
has a transaction body including the second memory trans-
action and an additional plurality of transactional memory
access instructions. In response to execution of the transac-
tional memory access instructions, memory accesses are
performed to the distributed shared memory system. Con-
flicts between memory accesses not within the first memory
transaction and at least a load footprint of any of the
transactional memory access instructions preceding the sec-
ond memory transaction are not tracked. However, conflicts
between memory accesses not within the first memory
transaction and store and load footprints of any of the
transactional memory access instructions that follow initia-
tion the second memory transaction are tracked.

In at least one embodiment, an instruction sequence
including, in order, a load-and-reserve instruction specifying
a read access to a target memory block, an instruction
delimiting transactional memory access instructions belong-
ing to a memory transaction, and a store-conditional instruc-
tion specifying a conditional write access to the target
memory block is detected by a processor. In response to
detecting the instruction sequence, the processor causes the
conditional write access to the target memory block to fail.

While various embodiments have been particularly shown
and described, it will be understood by those skilled in the
art that various changes in form and detail may be made
therein without departing from the spirit and scope of the
appended claims and these alternate implementations all fall
within the scope of the appended claims. For example,
although aspects have been described with respect to a
computer system executing program code that directs the
functions of the present invention, it should be understood
that present invention may alternatively be implemented as
a program product including a computer-readable storage
medium (or device) storing program code that can be
processed by a data processing system. The computer-
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readable storage medium can include volatile or non-volatile
memory, an optical or magnetic disk, or the like, but
excludes signal media.
As an example, the program product may include data
5 and/or instructions that when executed or otherwise pro-
cessed on a data processing system generate a logically,
structurally, or otherwise functionally equivalent represen-
tation (including a simulation model) of hardware compo-
nents, circuits, devices, or systems disclosed herein. Such
10 data and/or instructions may include hardware-description
language (HDL) design entities or other data structures
conforming to and/or compatible with lower-level HDL
design languages such as Verilog and VHDL, and/or higher
level design languages such as C or C++. Furthermore, the
15 data and/or instructions may also employ a data format used
for the exchange of layout data of integrated circuits and/or
symbolic data format (e.g. information stored in a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable
format for storing such design data structures).
What is claimed is:
1. A method of data processing in a data processing
system, the method comprising:
in a processor, detecting an instruction sequence of a
particular thread including, in order, a load-and-reserve
instruction specifying a read access to a target memory
block, an instruction delimiting transactional memory
access instructions belonging to a memory transaction,
and a store-conditional instruction specifying a condi-
tional write access to the target memory block; and
in response to detecting the instruction sequence within
the particular thread, the processor causing the condi-
tional write access to the target memory block to fail.
2. The method of claim 1, wherein the instruction delim-
iting transactional memory access instructions belonging to
the memory transaction is an instruction that initiates the
memory transaction.
3. The method of claim 2, wherein:
the method further comprises the processor detecting an
instruction terminating the memory transaction; and
the processor core causing the conditional write access to
the target memory block to fail comprises the processor
core causing the conditional write access to the target
memory block to fail unless the processor detects the
instruction terminating the memory transaction within
the instruction sequence after the instruction initiating
the memory transaction and prior to the store-condi-
tional instruction.
4. The method of claim 1, wherein:
the instruction delimiting transactional memory access
instructions belonging to the memory transaction is an
instruction that delimits a suspended region within the
memory transaction in which memory accesses are
performed regardless of whether the memory transac-
tion commits successfully; and
the method further comprises the processor core perform-
ing a memory access indicated by a memory access
instruction within the suspended region of the memory
transaction regardless of whether the memory transac-
tion commits successfully.
60 5. The method of claim 4, wherein:
the instruction comprises an instruction initiating the
suspended region;
the method further comprises the processor detecting an
instruction terminating the suspended region; and
the processor core causing the conditional write access to
the target memory block to fail comprises the processor
core causing the conditional write access to the target
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memory block to fail unless the processor detects the
instruction terminating the suspended region within the
instruction sequence after the instruction initiating the
suspended region and prior to the store-conditional
instruction.

6. The method of claim 4, wherein:

the instruction comprises an instruction initiating the

suspended region;

the method further comprises:

setting a fail flag to indicate that the conditional write
access should fail in response to detecting the
instruction initiating the suspended region;

resetting the fail flag in response to detecting another
load-and-reserve instruction within the suspended
region; and

the processor core causing the conditional write access to

the target memory block to fail comprises the processor
core causing the conditional write access to the target
memory block to fail only in response to the fail flag
being set.

7. The method of claim 1, wherein the instruction delim-
iting transactional memory access instructions belonging to
the memory transaction is an instruction that terminates the
memory transaction.

8. The method of claim 1, wherein:

the method further comprises setting a reservation flag to

indicate a valid reservation in response to execution of
the load-and-reserve instruction; and

the processor core causing the conditional write access to

the target memory block to fail includes resetting the
reservation flag.

9. A processing unit, comprising integrated circuitry, the
integrated circuitry including:

at least one execution unit that executes an instruction

sequence of a particular thread; and

logic that detects in the instruction sequence of the

particular thread, in order, a load-and-reserve instruc-
tion specifying a read access to a target memory block,
an instruction delimiting transactional memory access
instructions belonging to a memory transaction, and a
store-conditional instruction specifying a conditional
write access to the target memory block, and that,
responsive to detecting the instruction sequence within
the particular thread, causes the conditional write
access to the target memory block to fail.

10. The processing unit of claim 9, wherein the instruction
delimiting transactional memory access instructions belong-
ing to the memory transaction is an instruction that initiates
the memory transaction.

11. The processing unit of claim 10, wherein the logic
causes the conditional write access to the target memory
block to fail unless the processor detects an instruction
terminating the memory transaction within the instruction
sequence after the instruction initiating the memory trans-
action and prior to the store-conditional instruction.

12. The processing unit of claim 9, wherein the instruction
delimiting transactional memory access instructions belong-
ing to the memory transaction is an instruction that delimits
a suspended region within the memory transaction in which
memory accesses are performed regardless of whether the
memory transaction commits successfully.

13. The processing unit of claim 12, wherein:

the instruction comprises an instruction initiating the

suspended region;

the logic causes the conditional write access to the target

memory block to fail unless the processor detects an
instruction terminating the suspended region within the
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instruction sequence after the instruction initiating the
suspended region and prior to the store-conditional
instruction.

14. The processing unit of claim 12, wherein:

the instruction comprises an instruction initiating the

suspended region;

the processing unit further includes a fail flag;

the logic, in response to detecting the instruction initiating

the suspended region, sets the fail flag to indicate that
the conditional write access should fail and, in response
to detecting another load-and-reserve instruction within
the suspended region, resets the fail flag; and

the logic causing the conditional write access to the target

memory block to fail only in response to the fail flag
being set.

15. The processing unit of claim 9, wherein the instruction
delimiting transactional memory access instructions belong-
ing to the memory transaction is an instruction that termi-
nates the memory transaction.

16. The processing unit of claim 9, wherein:

the processing unit further includes a reservation flag;

the logic sets the reservation flag to indicate a valid

reservation in response to execution of the load-and-
reserve instruction; and

logic causes the conditional write access to the target

memory block to fail by resetting the reservation flag.

17. A data processing system, comprising:

a plurality of processing units in accordance with claim 9;

and

an interconnect fabric coupling the plurality of processing

units.

18. A design structure tangibly embodied in a non-
transitory machine-readable storage device for designing,
manufacturing, or testing an integrated circuit, the design
structure comprising:

a processing unit, including:

at least one execution unit that executes an instruction
sequence of a particular thread; and

logic that detects in the instruction sequence of the
particular thread, in order, a load-and-reserve
instruction specifying a read access to a target
memory block, an instruction delimiting transac-
tional memory access instructions belonging to a
memory transaction, and a store-conditional instruc-
tion specifying a conditional write access to the
target memory block, and that, responsive to detect-
ing the instruction sequence, causes the conditional
write access to the target memory block to fail.

19. The design structure of claim 18, wherein the instruc-
tion delimiting transactional memory access instructions
belonging to the memory transaction is an instruction that
initiates the memory transaction.

20. The design structure of claim 19, wherein the logic
causes the conditional write access to the target memory
block to fail unless the processor detects an instruction
terminating the memory transaction within the instruction
sequence after the instruction initiating the memory trans-
action and prior to the store-conditional instruction.

21. The design structure of claim 18, wherein the instruc-
tion delimiting transactional memory access instructions
belonging to the memory transaction is an instruction that
delimits a suspended region within the memory transaction
in which memory accesses are performed regardless of
whether the memory transaction commits successfully.

22. The design structure of claim 21, wherein:

the instruction comprises an instruction initiating the

suspended region;
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the logic causes the conditional write access to the target
memory block to fail unless the processor detects an
instruction terminating the suspended region within the
instruction sequence after the instruction initiating the
suspended region and prior to the store-conditional
instruction.

23. The design structure of claim 21, wherein:

the instruction comprises an instruction initiating the

suspended region;

the processing unit further includes a fail flag;

the logic, in response to detecting the instruction initiating

the suspended region, sets the fail flag to indicate that
the conditional write access should fail and, in response
to detecting another load-and-reserve instruction within
the suspended region, resets the fail flag; and

the logic causing the conditional write access to the target

memory block to fail only in response to the fail flag
being set.

24. The design structure of claim 18, wherein the instruc-
tion delimiting transactional memory access instructions
belonging to the memory transaction is an instruction that
terminates the memory transaction.

25. The design structure of claim 18, wherein:

the processing unit further includes a reservation flag;

the logic sets the reservation flag to indicate a valid

reservation in response to execution of the load-and-
reserve instruction; and

logic causes the conditional write access to the target

memory block to fail by resetting the reservation flag.

26. The design structure of claim 18, wherein the design
structure comprises a hardware description language (HDL)
design structure.
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